- •1.1 Классификация люминесценции
- •1.2 Основные физические характеристики люминесценции
- •1.3 Свойства люминесценции
- •2. Биолюминесценция
- •2.1 Происхождение.
- •2.2 Физика и химия.
- •2.3 Организмы, светоизлучение и биохимия.
- •Бактерии.
- •Динофлагеллаты.
- •Ракообразные.
- •Кишечнополостные.
- •Светляки.
- •Использование люминесценции животными.
- •Практическое использование люминесценции.
- •3. Люминофоры
1.2 Основные физические характеристики люминесценции
Как и всякое излучение, люминесценция характеризуется спектром (спектральной плотностью лучистого потока) и состоянием поляризации.
Изучение спектров люминесценции и факторов, на них влияющих, составляет часть спектроскопии. Наряду с этими общими характеристиками, имеются специфичные для люминесценции. Интенсивность люминесценции сама по себе редко представляет интерес. Вместо неё вводится величина отношения излучаемой энергии к поглощаемой, называемая выходом люминесценции. В большинстве случаев выход определяется в стационарных условиях как отношение излучаемой и поглощаемой мощности. В случае фотолюминесценции вводится понятие квантового выхода и рассматривается спектр выхода, т.е. зависимость выхода от частоты возбуждающего света и спектр поляризации – зависимость степени поляризации от частоты возбуждающего света. Кроме того, поляризация люминесценции характеризуется поляризационными диаграммами, вид которых связан с ориентацией и мультипольностью элементарных излучающих и поглощающих систем. Кинетика люминесценции, в частности вид кривой нарастания после включения возбуждения и кривой затухания люминесценции после его выключения, и зависимость кинетики от различных факторов: температуры, интенсивности возбуждающего источника и т. п., служат важными характеристиками люминесценции. Кинетика люминесценции в сильной степени зависит от типа элементарного процесса, хотя и не определяется им однозначно. Затухание спонтанной люминесценции с квантовым выходом, близким к единице, всегда происходит по экспоненциальному закону: I(t)=I0exp(-l/?), где ? характеризует среднее время жизни возбужденного состояния, т. е. равно обратной величине вероятности А спонтанного перехода в единицу времени. Однако, если квантовый выход люминесценции меньше единицы, т. е. люминесценция частично потушена, то экспоненциальный закон затухания сохраняется только в простейшем случае, когда вероятность тушения Q постоянна. В этом случае ?=1/(A+Q), а квантовый выход ?=A/(A+Q), где Q— вероятность безызлучательного перехода. Однако часто Q зависит от времени, протекшего от момента возбуждения данной молекулы, и тогда закон затухания люминесценции становится более сложным. Кинетика вынужденной люминесценции в случае с одним метастабильным уровнем определяется суммой двух экспонент: I(t)=C1exp(-l/?1)+C2exp(-l/?2), причем временные постоянные ?1 и ?2 зависят от вероятностной излучательной и безызлучательных переходов, а предэксцотенциальные множители С1 и С2 кроме того, — от начального распределения возбуждённых молекул по уровням. Вероятность вынужденного безызлучательного перехода с метастабильного уровня p=p0exp(?/kT), где ? — энергия активации, необходимая для перехода. Вследствие этого время затухания вынужденной люминесценции резко зависит от температуры. Рекомбинационная люминесценция кристаллофосфоров характерна очень сложной кинетикой, вследствие того, что в большинстве случаев в кристаллофосфорах имеются электронные и дырочные ловушки многих сортов, отличающихся глубиной энергетических уровней. В случае, когда рекомбинационная люминесценция может быть приближённо представлена законом бимолекулярной реакции, закон затухания выражается гиперболой второй степени I(t)=I0(1+pt)-2 где р—постоянная. Такой закон затухания наблюдается только в редких случаях. Чаще на значительном интервале затухание может быть представлено формулой Беккереля I(t)=I0(1+pt)-? где ? < 2, которую нужно рассматривать как аппроксимационную формулу, не имеющую непосредственного теоретического обоснования. Кинетика рекомбинационной люминесценции часто осложняется также специфическими процессами тушения, происходящим благодаря безызлучательным переходам вне центра люминесценции. Это приводит к различным нелинейным явлениям (зависимость выхода и других характеристик от плотности поглощаемой энергии).
