
Задача 4
Щоденна потреба у визначеному виробі має нормальний розподіл (середнє значення дорівнює 60, а стандартне відхилення - 7). Джерело поставок вважається надійним і забезпечує постійний час виконання замовлення – 6 днів. Вартість розміщення замовлення дорівнює 10$, а річні витрати на зберігання складають ) 0,50$ на один виріб. Втрат пов’язаних з дефіцитом виробів і невиконанням замовлень, немає. Продаж відбувається на протязі всього року. Визначити величину замовлення (Q) і точку повторного замовлення (R), які дозволяли б задовільнити 95%-ву потребу із наявного запасу.
Розв’язок
dav
= 60, S = 10$, H = 0,50$, D = 60 * 365, L = 6,
Оптимальна величина замовлення буде дорівнювати:
виробів.
Щоб обрахувати точку чергового замовлення, нам потрібно обчислити кількість виробів, яка використовується на протязі часу виконання замовлення і скласти його з резервним запасом.
Стандартне відхилення потреби на протязі шести днів (період виконання замовлення) обраховується на основі дисперсії по окремих днях. Оскільки потреба для кожного дня є незалежною величиною,
.
Визначимо скільки потрібно стандартних відхилень для забезпечення вказаного рівня обслуговування:
Е(z)
=
.
Із нормативної літератури по Е(z) =2721 отримуємо z = -2,72. Точка чергового замовлення:
R = davL + z = (60 * 6) + (-2,72) * 17,2 = 313,2 одиниці.
Висновок: замовлення на 936 одиниць розміщується кожний раз, коли кількість виробів, що залишаються в запасі, скорочується до 313. В цьому випадку резервний запас z є негативним. Це означає, що, якщо б ми замовляли обраховану нами кількість виробів Q = 936, коли рівень запасу понижується до очікуваної потреби на протязі періоду виконання замовлення (davL = 360), ми забезпечили б більш високий рівень обслуговування, ніж нам потрібно. Щоб понизити його до 95%, потрібно допустити більше нестач, видаючи замовлення в точці, яка розміщена дещо нижче обрахованої нами точки чергового замовлення (313). В цьому випадку ми фактично отримаємо дефіцит виробів в кожному циклі замовлення.
Перевіримо рівень обслуговування, який забезпечується в цьому періоді, вказавши, що нам прийшлося б розміщувати 23,4 замовлення в рік (60 * 365/936). В кожному із періодів нам прийшлося б стикатись з дефіцитом 46,8 одиниць (2,72 * 17,2). Таким чином, ми відчували б дефіцит 1095 виробів у рік (48,6 * 23,4). Відповідно, рівень обслуговування складе, як нам і потрібно, 0,95 = ((21900 – 1095)/21900).
Задача 5
Щоденна потреба в певному виробі складає 10 одиниць; стандартне відхилення 3 одиниці. Контрольний період 30 днів, а період виконання замовлення – 14 днів. Керівництво фірми прийняло рішення створити запас, який забезпечить 98%-е задоволення потреби. З початку даного контрольного періоду в запасі було 150 виробів. Скільки виробів потрібно замовити?
Розв’язок
Заказати потрібно:
q = dav(T + L) + - I = 10 (30 + 14) + - 150 одиниць
Звідси спочатку потрібно знайти і z. Щоб знайти , скористаємось твердженням, що стандартне відхилення послідовності випадкових незалежних змінних дорівнює кореню квадратному із суми дисперсій:
(10.14)
Оскільки кожен день незалежний, а - постійна величина, то
Тепер, щоб знайти z, перш за все знайдемо Е(z) і знайдемо відповідне значення за нормативною літературою. В цьому випадку потреба на протязі контрольного періоду складе davT, тобто
Е(z)
=
Із нормативної літератури шляхом інтерполяції отримуємо z = 0,21.
Таким чином кількість виробів, які потрібно замовити, складе:
q = dav(T + L) + - I = 10 * (30 + 14) + 0,21 * 19,9 - 150 = 294одиниці.
Отже, щоб задовольнити 98%-у потребу у виробах, потрібно на цей контрольний період замовити 294 вироби.