Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эмм.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
327.68 Кб
Скачать

12. Экономическая интерпретация задачи, двойственной к исходной задаче об оптимальном использовании ограниченных ресурсов.

На некоторый временной период, например месяц, осуществляется формирование производственной программы выпуска двух изделий Р1 и Р2. Для их произв-ва используется два осн вида рес-ов S1 и S2. Эконом оценки ожидаемых месячных объемов этих ресурсов составляют В1 и В2. На предприятии имеются утвержденные нормы расходов производственных ресурсов Аij, i =1,2; j= 1,2. Имеется возможность сбыта любых объемов производственной продукции по приемлемым продажным ценам С1 и С2. Нужноо выбрать такой вариант месячной производствен программы, котор позволяет максимизировать выручку от продаж. Двойствен задача: Пусть некая орг-ция решила закупить все ресурсы предприятия. При этом необходимо установить оптимальную цену на приобретаемые ресурсы, исходя из след объективных условий:-- покупающая орг-ция старается минимизировать общую стоимость рес-ов-- за каждый вид ресурсов надо уплатить не менее той суммы, которую хозяйство может выручить при переработке сырья в готовую продукцию.

13. Постановка и экономико-математическая модель транспортной задачи, ее модификации.

Постановка и экономико-математическая модель закрытой транспортной задачи.

Имеется m пунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется n пунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*N транспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от i к j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,m j=1,n объемы перевозок по коммуникации ij, т.е. в рассмотрение вводится матрица X=(Xij)m*n.

Min ∑ ∑ Cij Xij

Xij = Ai, i=1,m

Xij = Bj, j=1,n

Необходимым и достаточным условием разрешимости задачи является наличие баланса между спросом и предложением Ai = ∑Bj. Если имеется такое равенство, то ТЗ называется закрытой.

Постановка и экономико-математическая модель открытой транспортной задачи.

Имеется m пунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется n пунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*N транспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от i к j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,m j=1,n объемы перевозок по коммуникации ij, т.е. в рассмотрение вводится матрица X=(Xij)m*n.

Min ∑ ∑ Cij Xij

Xij = Ai, i=1,m

Xij = Bj, j=1,n

Если не выполняются условия баланса между спросом и предложением Ai = ∑Bj, то ТЗ называется открытой, при этом могут быть 2 случая. 1 случай: Ai > ∑Bj, тогда ограничения имеют вид XijAi, i=1,m. 2 случай: Ai < ∑Bj. Тогда ограничения имеют вид XijBj, j=1,n

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]