Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы АЭ-03-01 (2008) (кроме 40 и 53).doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
10.9 Mб
Скачать

63. Аварийные режимы в аэп с пч с шим.

Аварийные процессы в силовых преобразователях.

а). Аварийные процессы во входных цепях.

1. Внутреннее К3

2. Перенапряжение на силовых ключах выпрямителя.

3. Коммутационные схемные перенапряжения.

В транзисторных инверторах регулируемых по способу ШИМ и широко используемых в качестве звена повышенной частоты в преобразователях постоянного тока, можно выделить три вида защиты по управлению: ограничение максимального мгновенного значения тока транзистора, ограничение среднего значения тока в нагрузке (и, следовательно, в транзисторах) и полное выключение транзисторов.

Максимальное мгновенное допустимое значение тока входит в группу предельных параметров транзистора и поэтому нельзя допускать его превышения. Появление несимметрии управляющих импульсов силовыми транзисторами при наличии согласующего трансформатора приводит к его «замагничиванию» и, как следствие этого, нарастанию тока транзисторов. Задача защиты - ограничить значение тока по средством изменения скважности работы транзистора при ШИМ на допустимом уровне. Для этого в схеме должны быть предусмотрены датчики мгновенных значений токов транзисторов.

Ограничение среднего тока может быть осуществлено путем глубокого зарегулирования выходного напряжения за счет увеличения скважности работы транзисторов. Схемотехника с преобразователей с ШИМ обычно позволяет сравнительно просто реализовать такой режим работы.

Наиболее радикальным способом защиты является полное выключение силовых транзисторов в момент возникновения аварии. Недостаток этого способа защиты заключается в том, что он не обеспечивает протекание тока в короткозамкнутом контуре и, следовательно, срабатывания выходной защиты при КЗ в нагрузке. С другой стороны, этот способ наиболее эффективен не только при КЗ в нагрузке, но и других видов аварий, например при недопустимом повышении выходного напряжения, авариях в СУ и др.

Многообразие силовых электронных устройств и условий их эксплуатации обусловливает различие в способах защиты и их схемотехнического исполнения. Однако по сущности работы они во многом идентичны с рассмотренными.

Отдельно следует отметить наиболее общий для всех устройств класс защит от кратковременных перенапряжений в сетях, связанных с электронным устройством. Такие перенапряжения могут вызываться грозовыми разрядами и другими источниками мощных электромагнитных импульсов. Обычные энергопоглатительные RC – цепи от таких перенапряжений не эффективны. Поэтому, если по условиям эксплуатации появляется опасность возникновения таких перенапряжений, на сетевых вводах силового электронного устройства устанавливают специальные мощные полупроводниковые ограничители напряжения, имеющие вольт – амперные характеристики, аналогичные вольт – амперным характеристикам стабилитронов. Эти ограничители рассчитаны на поглощение энергии кратковременного импульса, наведенного на вводе напряжения, и ограничение значения его на допустимом элементной базой и схемой устройства уровне.

64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.

При эксплуатации электроприводов когда для связи между выходом преобразователя и статорной обмоткой АД необходимо применять монтажный кабель большой протяженности начинают проявляется нежелательные режимы , связанные с возникновением перенапряжения на зажимах двигателя. Неоспоримые достоинства транзисторных IGBT-инверторов напряжения (АИН) с широтно-импульсным управлением (ШИМ) в регулируемом асинхронном электроприводе сочетаются однако с рядом проблем, одной из которых является проблема "длинного кабеля", соединяющего обмотки двигателя (АД) с выходом АИН. Выходное напряжение U1 АИН с ШИМ приставляет собой высокочастотную последовательность прямоугольных импульсов различной по­лярности и длительности с одинаковой амплитудой Ud (значение постоянного напряжения на входе АИН).

рис.29 Выходное напряжение АИН с ШИМ.

Крутизна фронта , импульсов напряжения определяется скоростью переключения силовых ключей АИН и при использовании различных полупроводниковых приборов составляет:

• однооперационные тиристоры SCR - 4-10 мкс;

• запираемые тиристоры GТО - 2-4 мкс;

• силовые биполярные тиристоры GTR - 0,5-2 мкс;

• транзисторы IGBT - 0,05-0,1 мкс.

Существенно более высокое быстродействие IGBT-транзисторов, являющееся преимуществом для реализации высокочастотной ШИМ и минимизации потерь энергии в АИН и АД, негативно проявляется в протекании переходных процессов в цепи АИН - соединительный кабель - АД на интервалах времени фронта tf.

рис.30 Цепь соединения АИН с АД (эквивалентная схема).

Прохождение импульсного сигнала с крутым фронтом вызывает волновые процессы в кабеле, приводящие к появлению перенапряжений на зажимах двигателя.

рис.31Напряжение на зажимах АД при подключении длинным кабелем.

В этом случае согласно теории цепей кабель следует рассматривать как однородную длинную линию с распределенными параметрами. Ввиду относительной малости последовательным активным сопротивлением rК и параллельной активной проводимостью gK участка линии можно пренебречь. Волновое сопротивление z0 кабеля при этом определяется последовательной индуктивностью LK и параллельной емкостью СК участка линии:

Значения параметров LK и СК зависят от типа, конструкции и сечения кабеля (кабельной линии), но, как свидетельствуют справочные и экспериментальные данные, зависимость эта не значительна. Для широкого ассортимента монтажных проводов и кабелей усредненные значения этих параметров составляют:

LK = 1 мкГн/м;

СK = 50 пФ/м.

При этом z0 ≈140 Ом.

Можно с большой степенью достоверности принять z0=100...200 Ом для всех применяемых в электроприводах монтажных проводов и кабелей.

Входное сопротивление z1 кабеля представлено выходным сопротивлением полупроводниковых вентилей и внутренним сопротивлением батареи конденсаторов входного фильтра и является относительно малой величиной, которой также можно пренебречь:

z1<<z0

Выходным сопротивлением z2 кабеля является относительно большое для высокочастотного сигнала входное сопротивление АД, определяемое индуктивностью рассеяния L его обмоток и эквивалентной частотой ωf, фронта импульса напряжения:

поэтому z1<<z0.

Ориентировочный расчет z2 для АД на напряжение 0,4 кВ в диапазоне мощностей от 10 до 400 кВт при = 0,1 мкс дает следующие результаты:

для АД мощностью 10 кВт z2 = 30 кОм,

для АД мощностью 400 кВт z2 = 800 Ом.

В связи с вышесказанным, при прохождении крутого фронта импульса напряжения входная часть силового монтажного кабеля электропривода (со стороны АИН) работает в режиме короткого замыкания, выходная часть кабеля (на зажимах АД) - в режиме холостого хода. С учетом значений параметров волновые характеристики монтажных проводов и кабелей приближаются к характеристикам линии без искажений и потерь:

Равна примерно половине скорости света в вакууме. Для приведенных выше параметров LK и Cк

vf = 142*106 м/с.

Этой скорости соответствует длина волны

Если это время больше или равно времени фронта tf то в конце кабеля из-за его несогла­сованности с нагрузкой (z2>>z0) возникает от­раженная волна напряжения n2 U1, которая сум­мируется с падающей (прямой) волной напряжения U1, образуя стоячие волны.

В результате на зажимах АД образуется напряжение

где 0< n2 ≤1 - коэффициент отражения.

Максимальное значение и напряжение на зажимах АД удваивается.

Возвращаясь к началу кабеля, отраженная волна гасится малым входным сопротивлением z1<<z0. Поэтому напряжение U1 на зажимах АИН не изменяется.

При Tf<tf , коэффициент отражения n2 рас­считывается по формуле:

Таким образом, от длины волны зависит кри­тическая длина кабеля. Кабель, длина которого соизмерима с длиной волны, считается "длинным кабелем".

Критической считается длина кабеля, равная половине длины волны: , при которой к обмоткам АД прикладываются импульсы напря­жения, близкие к двойному напряжению U.

В электроприводах класса напряжения 0,4 кВ перенапряжение может достигать 1000 В. С уче­том характеристик используемых IGBT в зависимости от мощности электропривода, типа электродвигателя и кабеля может составлять от 7 до 20 м.

Высокочастотные импульсные перенапряжения в сочетании с высокой крутизной фронта импульсов напряжения могут приводить к интенсивному старению и снижению срока службы изоляции обмоток двигателя.

Для ограничения волновых перенапряжений на зажимах АД используются специальные фильтры, включаемые в выходные цепи инвертора:

1) последовательный силовой синусный LC-фильтр для преобразования прямоугольно-импульсного напряжения инвертора в синусоидальное напряжение на зажимах двигателя;

2) последовательный силовой LRC-фильтр dU/dt для уменьшения крутизны фронта импульсов выходного напряжения инвертора;

3) параллельный (слаботочный) RС-фильтр ограничения перенапряжений непосредственно у зажимов двигателя (обеспечивает согласование волнового сопротивления кабеля).

4) использование ферритовых колец. Одно ферритовое кольцо может быть использовано для каждой выходной фазы или для всех фаз вместе. В первом случае уменьшаются симметричные гармоники, но есть вероятность, что ферритовые кольца перенасытятся и потеряют свою функциональную способность. В случае, когда одно ферритовое кольцо на все три фазы, перенасыщение не грозит, поскольку сумма токов равна 0, и феррит может быть загружен только несимметричными гармониками. Лучшее решение, это комбинация этих двух вариантов.

147