
- •1. Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •4. Механические характеристики ад в двигательном режиме.
- •5. Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •1) Принципы и законы частотного регулирования
- •2)Реализация частотного регулирования. Классификация пч.
- •3)Эп с синхронным преобразователем частоты (спч)
- •4) Аэп с асинхронным электромашинным пч
- •5) Аэп со статическими преобразователями частоты
- •6) Непосредственный пч (нпч)
- •7) Статический преобразователь частоты с пзпт.
- •10) Особенности частотного регулирования скорости сд
- •6. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •7. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •2. Метод эквивалентных моментов.
- •3. Метод эквивалентной мощности.
- •4.2 Выбор мощности эд для кратковременного режима работы.(s2)
- •4.3 Выбор мощности эд для s3—s5
- •8. Основные характеристики сд (механические, угловые, u-образные)
- •9. Использование сд для компенсации реактивной мощности
- •10. Устройство и выбор высоковольтных выключателей
- •11. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •12.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •II.Системы возбуждения сд и их основные свойства
- •13. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •14. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •15. Способы и устройства гашения дуги в электрических аппаратах.
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •16. Устройство и выбор автоматических выключателей.
- •Отклонение напряжения
- •К.3 на фидере
- •Импульсы напряжения
- •Временные перенапряжения
- •19. Расчет установившихся токов короткого замыкания.
- •20. Свойства электрических сетей в зависимости от способа заземления нейтрали
- •21. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •22. Мероприятия по снижению потребления реактивной мощности.
- •23. Регулирование напряжения в электрических сетях предприятий отрасли.
- •24. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •25. Перенапряжения в сетях 6-10 кВ и защита от них.
- •26. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников по надежности электроснабжения.
- •27. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •28. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •29. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •Основные и резервные защиты трансформатора Газовая защита
- •Токовые защиты трансформатора
- •Дифференциальные токовые защиты трансформаторов
- •30. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад. Защита сд от асинхронного режима.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •Автоматическое повторное включение
- •Автоматическое включение резерва
- •34. Электропривод буровых лебедок.
- •1. Электропривод бл на базе асинхронного двигателя с фазным ротором.
- •2. Электропривод бл на базе ад с фазным ротором с тиристорным регулятором скольжения.
- •3. Регулируемый электропривод постоянного тока бл по схеме тп-д.
- •4. Электропривод буровой лебедки с электромагнитными муфтами и тормозами.
- •35. Назначение и конструкция электромагнитных муфт. Область их применения в электроприводах отрасли.
- •36. Электродвигатели и блоки управления электроприводами станков-качалок.
- •37 Перспективы регулируемого эп ск
- •38. Энергетические показатели электроприводов насосной нефтедобычи
- •39. Самозапуск электродвигателей. Порядок расчета режима самозапуска
- •41. Электробуры (эб) перспективы их применения.
- •42. Электропривод автоматических регуляторов подачи долота
- •43. Регулируемый эп буровых насосов.
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •1) Электромеханические переходные процессы
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •46. Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли Общие положения, назначение и классификация следящих приводов
- •49 Частотное управление ад при постоянном потокосцеплении статора. Структура системы управления.
- •50. Векторное управление асинхронным эд
- •51. Метод пространственного вектора
- •52. Разновидности электрических контактов. Сопротивление электрического контакта
- •1.2.1. Классификация электрических контактов
- •1.2.2. Контактная поверхность и контактное сопротивление
- •1.2.3. Зависимость переходного сопротивления от свойств материала контактов
- •1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
- •1.2.5. Сваривание электрических контактов
- •1.2.6. Износ контактов
- •1.2.7. Параметры контактных конструкций
- •55. Электропривод как система. Структура электропривода
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •58. Инженерные методы оценки точности и качства регулирования координат
- •59. Энергетические показатели электропривода
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •60.Надежност эп. Основные понятия, критерии надёжности
- •6.2 Показатели надёжности
- •6.3 Расчёт показателей надёжности
- •61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
- •62. Автоматизированные электроприводы переменного тока с машинами двойного питания.
- •63. Аварийные режимы в аэп с пч с шим.
- •64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.
61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
Преобразователи с непосредственной связью предназначены для однозвенного преобразования энергии переменного тока одной частоты в энергию переменного тока другой (как правило, более низкой) частоты.
рис.36
НПЧ состоит из: 18 управляемых силовых ключей, объедененных в встречно параллельные группы с раздельным или совместным управлением.
В основе непосредственного преобразователя лежит трехфазная нулевая схема выпрямления, при этом каждая фаза преобразователя состоит из двух таких встречно включенных выпрямителей состоящих из трех силовых ключей.
Группа ключей имеющих общий катод - выпрямительная (положительная), а группа, имеющая общий анод - инверторная (отрицательная).
Каждая фаза работает как двухкомплектный реверсивный преобразователь. Вентильные группы каждой фазы могут иметь либо раздельную, либо совместную схему управления.
При раздельном управлении управляющие импульсы подаются на силовые ключи только на первые из вентильных групп в соответствии с направлением тока и напряжения в нагрузке. В период прохождения “+” полуволны управляющие импульсы подаются на силовые ключи выпрямительной группы, в период “-” на вход инверторной группы. При раздельном управлении во избежание КЗ применяют специальные логические устройства, которые исключают возможность прохождения тока в одной группе в то время когда работает другая группа. В преобразователях с совместным управлением управляющие импульсы подаются на силовые ключи обеих групп. В этом случае силовая схема предполагает включение ограничительных ректоров для уменьшения уравнительных токов между силовыми ключами катодной и анодной группы. При этом угол управления выпрямительной и инверторной групп изменяется по определенному закону, исключающему появление постоянной составляющей уравнительного тока.
Необходимо отметить, что в настоящее время, подавляющее большинство НПЧ работают по принципу раздельного управления.
Преимущества раздельного управления:
1.) значительно лучшие массогабаритные показатели.
2.)Примерно в два раза меньше установленная мощность и энергопотребление.
Кривая выходного напряжения НПЧ формируется из отрезков волн напряжения питающей сети. При работе НПЧ на чисто активную нагрузку форма выходного напряжения далека от синусоидальной. Чтобы получить выходное напряжение близкое по форме к синусоидальной необходимо изменять угол управления На диаграмме показано что в течение первой полуволны угол α изменяется 0 до 90 по трапециидальному закону ( 0-90 перевернутая трапеция, 90-180 прямая трапеция)
Рис.37
Для регулирования частоты на выходе преобразователя изменяют периоды коммутации, т.е. при уменьшении периода – выходная частота увеличится, а при увеличении периода – выходная частота уменьшится. Выходная частота НПЧ может быть только меньше частоты питающей сети т.к. выходное напряжение строится из отрезков входного напряжения. Необходимый фазовый сдвиг достигается путем сдвига на определенный угол момента подачи первого управляющего сигнала на каждой из фаз. Этот фазовый сдвиг соответствует симметрии выходного напряжения и составляет угол 1200 , а изменение начальной фазы применяется для изменения чередования фаз (реверс).
НПЧ выпускают двух модификации:
С фиксированной выходной частотой.
С регулируемой выходной частотой.
Если f1 = 50 Гц, то f2 регулируется в приделах от 0 до 25 Гц. Это связанно с тем, что при fвых >50 % очень сильно искажается форма выходного напряжения. С целью расширения верхнего придела регулирования используют источники питания с частотой 100 Гц. В этом случае выходная частота регулируется в диапазоне от 0 до 180 Гц.
Достоинства НПЧ:
однократное преобразование энергии, боле высокий КПД ≈ 0,97-0,98
возможность автономного регулирования U и I.
свободный обмен реактивной и активной энергией между сетью и двигателем (обеспечивает возможность работы в режимах рекуперативного торможения и компенсации реактивной энергии).
простая реализация бесконтактного реверса.
коммутация силовых ключей осуществляется естественным путем.
Недостатки НПЧ:
ограниченная возможность регулирования частоты от 0 до 40 %.
относительно большое число силовых ключей (18 сравнении с 6).
сложность системы управления.
низкий cosφ (cosφ ≤0,8)
Область применения НПЧ в качестве вспомогательного блока в таких электроприводах, как вентильные ЭП, ЭП двойного питания, каскадные ЭП.