
- •1. Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •4. Механические характеристики ад в двигательном режиме.
- •5. Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •1) Принципы и законы частотного регулирования
- •2)Реализация частотного регулирования. Классификация пч.
- •3)Эп с синхронным преобразователем частоты (спч)
- •4) Аэп с асинхронным электромашинным пч
- •5) Аэп со статическими преобразователями частоты
- •6) Непосредственный пч (нпч)
- •7) Статический преобразователь частоты с пзпт.
- •10) Особенности частотного регулирования скорости сд
- •6. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •7. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •2. Метод эквивалентных моментов.
- •3. Метод эквивалентной мощности.
- •4.2 Выбор мощности эд для кратковременного режима работы.(s2)
- •4.3 Выбор мощности эд для s3—s5
- •8. Основные характеристики сд (механические, угловые, u-образные)
- •9. Использование сд для компенсации реактивной мощности
- •10. Устройство и выбор высоковольтных выключателей
- •11. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •12.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •II.Системы возбуждения сд и их основные свойства
- •13. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •14. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •15. Способы и устройства гашения дуги в электрических аппаратах.
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •16. Устройство и выбор автоматических выключателей.
- •Отклонение напряжения
- •К.3 на фидере
- •Импульсы напряжения
- •Временные перенапряжения
- •19. Расчет установившихся токов короткого замыкания.
- •20. Свойства электрических сетей в зависимости от способа заземления нейтрали
- •21. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •22. Мероприятия по снижению потребления реактивной мощности.
- •23. Регулирование напряжения в электрических сетях предприятий отрасли.
- •24. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •25. Перенапряжения в сетях 6-10 кВ и защита от них.
- •26. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников по надежности электроснабжения.
- •27. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •28. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •29. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •Основные и резервные защиты трансформатора Газовая защита
- •Токовые защиты трансформатора
- •Дифференциальные токовые защиты трансформаторов
- •30. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад. Защита сд от асинхронного режима.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •Автоматическое повторное включение
- •Автоматическое включение резерва
- •34. Электропривод буровых лебедок.
- •1. Электропривод бл на базе асинхронного двигателя с фазным ротором.
- •2. Электропривод бл на базе ад с фазным ротором с тиристорным регулятором скольжения.
- •3. Регулируемый электропривод постоянного тока бл по схеме тп-д.
- •4. Электропривод буровой лебедки с электромагнитными муфтами и тормозами.
- •35. Назначение и конструкция электромагнитных муфт. Область их применения в электроприводах отрасли.
- •36. Электродвигатели и блоки управления электроприводами станков-качалок.
- •37 Перспективы регулируемого эп ск
- •38. Энергетические показатели электроприводов насосной нефтедобычи
- •39. Самозапуск электродвигателей. Порядок расчета режима самозапуска
- •41. Электробуры (эб) перспективы их применения.
- •42. Электропривод автоматических регуляторов подачи долота
- •43. Регулируемый эп буровых насосов.
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •1) Электромеханические переходные процессы
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •46. Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли Общие положения, назначение и классификация следящих приводов
- •49 Частотное управление ад при постоянном потокосцеплении статора. Структура системы управления.
- •50. Векторное управление асинхронным эд
- •51. Метод пространственного вектора
- •52. Разновидности электрических контактов. Сопротивление электрического контакта
- •1.2.1. Классификация электрических контактов
- •1.2.2. Контактная поверхность и контактное сопротивление
- •1.2.3. Зависимость переходного сопротивления от свойств материала контактов
- •1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
- •1.2.5. Сваривание электрических контактов
- •1.2.6. Износ контактов
- •1.2.7. Параметры контактных конструкций
- •55. Электропривод как система. Структура электропривода
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •58. Инженерные методы оценки точности и качства регулирования координат
- •59. Энергетические показатели электропривода
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •60.Надежност эп. Основные понятия, критерии надёжности
- •6.2 Показатели надёжности
- •6.3 Расчёт показателей надёжности
- •61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
- •62. Автоматизированные электроприводы переменного тока с машинами двойного питания.
- •63. Аварийные режимы в аэп с пч с шим.
- •64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.
Силовой канал электропривода
Силовой канал электропривода, представленный на рисунке 1.3, состоит из двух частей:
Электрической части силового канала электропривода;
Механической части силового канала электропривода.
Технологическаяустановка
Рисунок 1.3 – Силовой канал электропривода
1.1.1 Механическая часть силового канала электропривода
В состав механической части входят:
Подвижная часть электромеханического преобразователя (двигателя);
Механический преобразователь;
Исполнительный орган производственного механизма ИОПМ.
Как правило, в современных регулируемых электроприводах механический преобразователь отсутствует и при этом двигатель, и производственный механизм имеют общий вал, а скорость вращения двигателя согласуется с требуемой скоростью вращения механизма с помощью электрического преобразователя. При этом вал двигателя и производственного механизма приводится во вращение под действием вращающего момента, создаваемого электродвигателем.
Кроме того, производственный механизм, а также сам электродвигатель создают так называемый статический момент сопротивления, препятствующий этому вращению.
56-57.Обобщенная электрическая машина. Координатные и фазные преобразования
Электромеханические преобразователи (ЭМП) являются основным звеном силового канала ЭП, которое непосредственно выполняет функцию преобразования электрической энергии в механическую, являясь, при этом, связующим звеном между электрической и механической частями силового канала.
В дальнейшем из всего многообразия ЭМП будем рассматривать Эл двигатели промышленного назначения.
В структуре электропривода ЭМП рассматривается в виде идеализированного ЭД, что означает:
1) ротор ЭД не обладает массой;
2) не имеет механических потерь;
3) жестко связан с реальным физическим ротором, относящимся к механической части ЭМП.
Такой
идеализированный ЭД может быть представлен
в виде электрического многополюсника,
содержащим
пар электрических выводов (
соответствует числу обмоток, фаз
двигателя) и, кроме того, одну пару
механических выводов. На механических
выводах в результате электромеханического
преобразования энергии при скорости
вращения
развивается электромагнитный момент
.
Поэтому эти два вывода обозначаются
и
.
Электромагнитный момент
является
выходным параметром ЭМП и, одновременно,
выходным параметром для механической
части силового канала. Угловая скорость
определяется условиями движения
механической части, но для ЭМП обычно
рассматривается как независимая
переменная.
Механические переменные и связывают ЭМП с механической частью в единую взаимосвязную систему. При этом все процессы в ЭД описываются системой уравнений электрического равновесия, число уравнений равно числу обмоток двигателя. Кроме того, в математическое описание ЭМП обязательно входит уравнение электромагнитного преобразования энергии и уравнение движения.
В современной теории ЭП в качестве обобщенной модели ЭМП обычно используют, так называемую, двухфазную модель; к ней можно привести абсолютно все виды и типы ЭМП. Такая модель – «Обобщенная электрическая машина» (рис.11).
Рис.11 Обобщенная электрическая машина
На
этой модели электрическая машина
представлена в виде неподвижного статора
с двумя обмотками, располагающимся
вдоль неподвижных координат
и
,
а также вращающегося ротора с двумя
обмотками, располагающимися вдоль
вращающихся координат
и
.
- угол поворота ротора;
- скорость вращения ротора,
;
и
- напряжения на фазах обмотки статора;
и
- напряжения на фазах обмотки ротора.
При этом уравнение электрического равновесия имеет вид:
,
(13)
где
- активное сопротивление
-ой
обмотки;
- напряжение на
-ой
обмотке
- потокосцепление
-ой
обмотки
;
-
собственные индуктивности,
- взаимоиндуктивности.
Необходимо
отметить, что величина взаимоиндуктивностей
зависит от угла поворота ротора
и, как следствие, от пространственного
сдвига обмоток, т.е. является функцией
скорости и времени. Это является
физической причиной того, что ни у одной
электрической машины значение
не может достигнуть 1.
Для
того чтобы ЭД любого вида и типа привести
к представленной двухфазной модели
этой машины производят координатные
преобразования. Сущность этих
преобразований сводится к тому, что для
упрощения модели, функции статора,
представленные в неподвижной системе
координат
приводят к вращающейся системе координат
.
А для того, чтобы вновь вернутся к
реальному объекту систему
нужно привести к
(
).
Учитывая то, что большинство реальных ЭД включают в себя трехфазные статорные и роторные обмотки, для получения рассмотренной модели необходимо произвести прямые и обратные фазные преобразования, сущность которых сводится к следующему:
1)
трехфазные в двухфазные
,
;
2)
двухфазные в трехфазные
,
.