- •1. Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •4. Механические характеристики ад в двигательном режиме.
- •5. Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •1) Принципы и законы частотного регулирования
- •2)Реализация частотного регулирования. Классификация пч.
- •3)Эп с синхронным преобразователем частоты (спч)
- •4) Аэп с асинхронным электромашинным пч
- •5) Аэп со статическими преобразователями частоты
- •6) Непосредственный пч (нпч)
- •7) Статический преобразователь частоты с пзпт.
- •10) Особенности частотного регулирования скорости сд
- •6. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •7. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •2. Метод эквивалентных моментов.
- •3. Метод эквивалентной мощности.
- •4.2 Выбор мощности эд для кратковременного режима работы.(s2)
- •4.3 Выбор мощности эд для s3—s5
- •8. Основные характеристики сд (механические, угловые, u-образные)
- •9. Использование сд для компенсации реактивной мощности
- •10. Устройство и выбор высоковольтных выключателей
- •11. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •12.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •II.Системы возбуждения сд и их основные свойства
- •13. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •14. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •15. Способы и устройства гашения дуги в электрических аппаратах.
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •16. Устройство и выбор автоматических выключателей.
- •Отклонение напряжения
- •К.3 на фидере
- •Импульсы напряжения
- •Временные перенапряжения
- •19. Расчет установившихся токов короткого замыкания.
- •20. Свойства электрических сетей в зависимости от способа заземления нейтрали
- •21. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •22. Мероприятия по снижению потребления реактивной мощности.
- •23. Регулирование напряжения в электрических сетях предприятий отрасли.
- •24. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •25. Перенапряжения в сетях 6-10 кВ и защита от них.
- •26. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников по надежности электроснабжения.
- •27. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •28. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •29. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •Основные и резервные защиты трансформатора Газовая защита
- •Токовые защиты трансформатора
- •Дифференциальные токовые защиты трансформаторов
- •30. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад. Защита сд от асинхронного режима.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •Автоматическое повторное включение
- •Автоматическое включение резерва
- •34. Электропривод буровых лебедок.
- •1. Электропривод бл на базе асинхронного двигателя с фазным ротором.
- •2. Электропривод бл на базе ад с фазным ротором с тиристорным регулятором скольжения.
- •3. Регулируемый электропривод постоянного тока бл по схеме тп-д.
- •4. Электропривод буровой лебедки с электромагнитными муфтами и тормозами.
- •35. Назначение и конструкция электромагнитных муфт. Область их применения в электроприводах отрасли.
- •36. Электродвигатели и блоки управления электроприводами станков-качалок.
- •37 Перспективы регулируемого эп ск
- •38. Энергетические показатели электроприводов насосной нефтедобычи
- •39. Самозапуск электродвигателей. Порядок расчета режима самозапуска
- •41. Электробуры (эб) перспективы их применения.
- •42. Электропривод автоматических регуляторов подачи долота
- •43. Регулируемый эп буровых насосов.
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •1) Электромеханические переходные процессы
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •46. Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли Общие положения, назначение и классификация следящих приводов
- •49 Частотное управление ад при постоянном потокосцеплении статора. Структура системы управления.
- •50. Векторное управление асинхронным эд
- •51. Метод пространственного вектора
- •52. Разновидности электрических контактов. Сопротивление электрического контакта
- •1.2.1. Классификация электрических контактов
- •1.2.2. Контактная поверхность и контактное сопротивление
- •1.2.3. Зависимость переходного сопротивления от свойств материала контактов
- •1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
- •1.2.5. Сваривание электрических контактов
- •1.2.6. Износ контактов
- •1.2.7. Параметры контактных конструкций
- •55. Электропривод как система. Структура электропривода
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •58. Инженерные методы оценки точности и качства регулирования координат
- •59. Энергетические показатели электропривода
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •60.Надежност эп. Основные понятия, критерии надёжности
- •6.2 Показатели надёжности
- •6.3 Расчёт показателей надёжности
- •61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
- •62. Автоматизированные электроприводы переменного тока с машинами двойного питания.
- •63. Аварийные режимы в аэп с пч с шим.
- •64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.
1.2.5. Сваривание электрических контактов
Использование
контактов при условии, что напряжение
Uк не превзойдёт
напряжения Uр
возможно лишь в слаботочных (слаботоковых)
аппаратах. В сильнотоковых аппаратах,
предназначенных для работы в режимах
короткого замыкания, условие
или
привело
бы к необходимости создания чрезмерно
больших усилий сжатия контактов. Поэтому
в сильнотоковых аппаратах не исключено
расплавление
-пятна
в замкнутом состоянии контактов, что
может привести к свариванию контактов
так, как это происходит при точечной
электросварке.
1.2.6. Износ контактов
Под износом контактов понимают разрушение рабочей поверхности коммутирующих контактов, приводящее к изменению их геометрической формы, размера, массы и т.д.
Износ, происходящий под действием электрических факторов, называется электрическим износом – электрической эрозией контактов. Износ под действием механических факторов здесь не рассматривается, он обычно много меньше электрического.
При размыкании сила, сжимающая контакты, снижается до нуля, резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Площадка сильно разогревается, и между расходящимися контактами образуется контактный перешеек (мостик) из расплавленного металла, который в дальнейшем рвется. При этом в промежутке между контактами могут возникнуть различные формы электрического разряда.
Мостиковую эрозию контактов можно объяснить термоэлектрическими эффектами, приводящими к асимметрии расплавленного металлического мостика (рис. 2.5), что в конечном счете приводит к переносу материала с одного контакта на другой.
В
результате термоэлектрических эффектов
максимум температуры приходится не
на середину расплавленного мостика М
а смещен от нее на
в сторону переноса теплоты. При разрыве
он нарушается по изотерме с температурой
T
max
и на одном участке остается больше
металла, чем на другом. Застывший металл
при большом числе отключений образует
неправильные формы контактов. Эффектные
меры борьбы с эрозией состоят в создании
симметричных тепловых режимов
мостика, например, подбором соответствующих
контактных пар.
Электрическая эрозия наблюдается при небольших токах; при больших токах характерен дуговой износ контактов. Он определяет коммутационную износостойкость аппарата, его способность выполнять определенное число коммутаций тока контактами в заданных условиях отключения цепи. Она выражается предельным для аппарата числом коммутационных циклов. Механическая износостойкость аппарата определяется его способностью выполнять определенное число операций отключения и отключения без тока в цепи главных контактов.
Рис. 2.5. Фазы мостиковой эрозии контактов
Дуговой износ контактов – это выгорание материала контактов под воздействием электрической дуги.
Энергия, сосредоточенная в небольших объемах, разогревает металл, плавит его и доводит до температуры кипения. Материал контактов выбрасывается в виде паров металла и капель.
Относительную
дугостойкость различных металлов можно
оценить на основании диаграммы (рис.
2.6). Она построена по результатам опытов
с короткой дугой (0,8 мм) при токе 12 кА и
продолжительности его протекания 0,0085
с. По оси ординат отложено отношение
объёмного износа
к
количеству электричества
прошедшему через промежуток в форме
газового разряда.
Рис. 2.6. Сопоставление удельного износа контактов
