
- •1. Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •4. Механические характеристики ад в двигательном режиме.
- •5. Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •1) Принципы и законы частотного регулирования
- •2)Реализация частотного регулирования. Классификация пч.
- •3)Эп с синхронным преобразователем частоты (спч)
- •4) Аэп с асинхронным электромашинным пч
- •5) Аэп со статическими преобразователями частоты
- •6) Непосредственный пч (нпч)
- •7) Статический преобразователь частоты с пзпт.
- •10) Особенности частотного регулирования скорости сд
- •6. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •7. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •2. Метод эквивалентных моментов.
- •3. Метод эквивалентной мощности.
- •4.2 Выбор мощности эд для кратковременного режима работы.(s2)
- •4.3 Выбор мощности эд для s3—s5
- •8. Основные характеристики сд (механические, угловые, u-образные)
- •9. Использование сд для компенсации реактивной мощности
- •10. Устройство и выбор высоковольтных выключателей
- •11. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •12.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •II.Системы возбуждения сд и их основные свойства
- •13. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •14. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •15. Способы и устройства гашения дуги в электрических аппаратах.
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •16. Устройство и выбор автоматических выключателей.
- •Отклонение напряжения
- •К.3 на фидере
- •Импульсы напряжения
- •Временные перенапряжения
- •19. Расчет установившихся токов короткого замыкания.
- •20. Свойства электрических сетей в зависимости от способа заземления нейтрали
- •21. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •22. Мероприятия по снижению потребления реактивной мощности.
- •23. Регулирование напряжения в электрических сетях предприятий отрасли.
- •24. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •25. Перенапряжения в сетях 6-10 кВ и защита от них.
- •26. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников по надежности электроснабжения.
- •27. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •28. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •29. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •Основные и резервные защиты трансформатора Газовая защита
- •Токовые защиты трансформатора
- •Дифференциальные токовые защиты трансформаторов
- •30. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад. Защита сд от асинхронного режима.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •Автоматическое повторное включение
- •Автоматическое включение резерва
- •34. Электропривод буровых лебедок.
- •1. Электропривод бл на базе асинхронного двигателя с фазным ротором.
- •2. Электропривод бл на базе ад с фазным ротором с тиристорным регулятором скольжения.
- •3. Регулируемый электропривод постоянного тока бл по схеме тп-д.
- •4. Электропривод буровой лебедки с электромагнитными муфтами и тормозами.
- •35. Назначение и конструкция электромагнитных муфт. Область их применения в электроприводах отрасли.
- •36. Электродвигатели и блоки управления электроприводами станков-качалок.
- •37 Перспективы регулируемого эп ск
- •38. Энергетические показатели электроприводов насосной нефтедобычи
- •39. Самозапуск электродвигателей. Порядок расчета режима самозапуска
- •41. Электробуры (эб) перспективы их применения.
- •42. Электропривод автоматических регуляторов подачи долота
- •43. Регулируемый эп буровых насосов.
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •1) Электромеханические переходные процессы
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •46. Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли Общие положения, назначение и классификация следящих приводов
- •49 Частотное управление ад при постоянном потокосцеплении статора. Структура системы управления.
- •50. Векторное управление асинхронным эд
- •51. Метод пространственного вектора
- •52. Разновидности электрических контактов. Сопротивление электрического контакта
- •1.2.1. Классификация электрических контактов
- •1.2.2. Контактная поверхность и контактное сопротивление
- •1.2.3. Зависимость переходного сопротивления от свойств материала контактов
- •1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
- •1.2.5. Сваривание электрических контактов
- •1.2.6. Износ контактов
- •1.2.7. Параметры контактных конструкций
- •55. Электропривод как система. Структура электропривода
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •58. Инженерные методы оценки точности и качства регулирования координат
- •59. Энергетические показатели электропривода
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •60.Надежност эп. Основные понятия, критерии надёжности
- •6.2 Показатели надёжности
- •6.3 Расчёт показателей надёжности
- •61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
- •62. Автоматизированные электроприводы переменного тока с машинами двойного питания.
- •63. Аварийные режимы в аэп с пч с шим.
- •64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.
1.2.3. Зависимость переходного сопротивления от свойств материала контактов
Переходное сопротивление чрезвычайно чувствительно к окислению поверхности ввиду того, что окислы многих металлов (в частности, меди) являются плохими проводниками. У медных открытых контактов вследствие их окисления с течением времени переходное сопротивление может возрасти в тысячи раз.
В процессе длительного пребывания под током на поверхности замкнутых контактов также возникают окисные, плохо проводящие ток плёнки. Они проникают к площадкам контактирования и, увеличивая тем самым переходное сопротивление, могут вывести контакты из строя. Повышение температуры ускоряет степень окисления поверхности контактов. Повышение силы контактного нажатия, наоборот, затрудняет проникновение окисных плёнок к площадкам контактирования, повышая тем самым срок службы контактов.
Окислы серебра имеют электрическую проводимость, близкую к проводимости чистого серебра. При повышенных температурах окислы серебра разрушаются. Поэтому переходное сопротивление контактов из серебра практически не изменяется с течением времени. Оно даже может понизиться вследствие медленной пластической деформации материала в площадках контактирования. Для медных контактов применяются специальные меры по уменьшению окисления их рабочих поверхностей.
В разборных соединениях производят антикоррозионные покрытия рабочих поверхностей – серебрят, лудят, покрывают кадмием, никелируют и цинкуют. Применяют покрытие рабочих поверхностей нейтральной смазкой после их технического обслуживания.
Коммутирующие контакты, длительно работающие под током не выключаясь, выполняются, как правило, из серебра или металлокерамики на основе серебра. Для медных контактов снижается значение тока нагрузки по сравнению с допустимым значением. Тем самым снижаются нагрев контактов и интенсивность их окисления.
Возникающая при отключении дуга сжигает окислы, и переходное сопротивление снижается. Во многих аппаратах кинематическая схема предусматривает при замыкании некоторое проскальзывание одного контакта по другому. Образовавшаяся окисная пленка при этом разрушается.
Материалы большей твердости имеют большее переходное сопротивление и требуют большего контактного нажатия. Чем выше электрическая проводимость и теплопроводность материала, тем ниже переходное сопротивление.
1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
Наличие переходного сопротивления контактов неизбежно приводит к тому, что в зоне контакта выделяется тепло, т. е. всякий электрический контакт является дополнительным источником тепла. В контактном соединении можно выделить зону стягивания, т. е. ту часть проводников, прилегающих к поверхности контакта, в которой сосредоточено сопротивление стягивания. Разумеется, сопротивление, обусловленное наличием окисных пленок, также сосредоточено в этой зоне, непосредственно между поверхностями контакта.
Ввиду того, что наружная поверхность зоны стягивания невелика, в первом приближении можно пренебречь количеством теплоты, отдаваемой в окружающую среду непосредственно этой поверхностью, и считать, что теплота, генерируемая в этой зоне, распространяется в части проводника, прилегающей к этой зоне, а далее с поверхности проводников - в окружающую среду.
При прохождении
тока нагревается само тело проводника,
что приводит к увеличению падения
напряжения на этом участке электрической
цепи. Кроме этого, изменяется сопротивление
стягивания и увеличивается падение
напряжения на переходном сопротивлении
контакта
Известно, что для каждого материала существуют определённые падения напряжения на контактах, при которых температура контактного пятна достигает значений, характеризующих фазовое состояние материала. Так, температуре рекристаллизации соответствует напряжение размягчения. Температуре плавления материала соответствует напряжение плавления, а температуре кипения – напряжение кипения. Для некоторых металлов значения этих напряжений приведены в табл. 2.1.
Таблица 2.1.
Название металла |
Uразмягчения, (Uр), В |
Uплавления, (Uпл), В |
Uкипения, (Uкип), В |
Медь (Cu) |
0, 12 |
0, 43 |
0, 79 |
Серебро (Ag) |
0, 09 |
0, 37 |
0, 68 |
Платина (Pt) |
0, 25 |
0, 65 |
1, 50 |
Вольфрам (W) |
0, 40 |
1, 10 |
2, 10 |
Золото (Au) |
0, 08 |
0, 43 |
0, 90 |
Зависимость сопротивления контакта от падения напряжения на нём (R – U характеристика) представлена на рис. 2.4.
Рис. 2.4. R – U характеристика контакта
С ростом падения напряжения на контакте Uк переходное сопротивление вначале растёт, а затем, при напряжении Uр происходит резкое падение механических свойств материала. При том же усилии нажатия увеличивается площадь контактирования и переходное сопротивление резко уменьшается. В дальнейшем оно снова линейно возрастает, а при напряжении Uпл электрический контакт сваривается – переходное сопротивление снова резко уменьшается.