- •1. Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •4. Механические характеристики ад в двигательном режиме.
- •5. Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •1) Принципы и законы частотного регулирования
- •2)Реализация частотного регулирования. Классификация пч.
- •3)Эп с синхронным преобразователем частоты (спч)
- •4) Аэп с асинхронным электромашинным пч
- •5) Аэп со статическими преобразователями частоты
- •6) Непосредственный пч (нпч)
- •7) Статический преобразователь частоты с пзпт.
- •10) Особенности частотного регулирования скорости сд
- •6. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •7. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •2. Метод эквивалентных моментов.
- •3. Метод эквивалентной мощности.
- •4.2 Выбор мощности эд для кратковременного режима работы.(s2)
- •4.3 Выбор мощности эд для s3—s5
- •8. Основные характеристики сд (механические, угловые, u-образные)
- •9. Использование сд для компенсации реактивной мощности
- •10. Устройство и выбор высоковольтных выключателей
- •11. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •12.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •II.Системы возбуждения сд и их основные свойства
- •13. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •14. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •15. Способы и устройства гашения дуги в электрических аппаратах.
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •16. Устройство и выбор автоматических выключателей.
- •Отклонение напряжения
- •К.3 на фидере
- •Импульсы напряжения
- •Временные перенапряжения
- •19. Расчет установившихся токов короткого замыкания.
- •20. Свойства электрических сетей в зависимости от способа заземления нейтрали
- •21. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •22. Мероприятия по снижению потребления реактивной мощности.
- •23. Регулирование напряжения в электрических сетях предприятий отрасли.
- •24. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •25. Перенапряжения в сетях 6-10 кВ и защита от них.
- •26. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников по надежности электроснабжения.
- •27. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •28. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •29. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •Основные и резервные защиты трансформатора Газовая защита
- •Токовые защиты трансформатора
- •Дифференциальные токовые защиты трансформаторов
- •30. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад. Защита сд от асинхронного режима.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •Автоматическое повторное включение
- •Автоматическое включение резерва
- •34. Электропривод буровых лебедок.
- •1. Электропривод бл на базе асинхронного двигателя с фазным ротором.
- •2. Электропривод бл на базе ад с фазным ротором с тиристорным регулятором скольжения.
- •3. Регулируемый электропривод постоянного тока бл по схеме тп-д.
- •4. Электропривод буровой лебедки с электромагнитными муфтами и тормозами.
- •35. Назначение и конструкция электромагнитных муфт. Область их применения в электроприводах отрасли.
- •36. Электродвигатели и блоки управления электроприводами станков-качалок.
- •37 Перспективы регулируемого эп ск
- •38. Энергетические показатели электроприводов насосной нефтедобычи
- •39. Самозапуск электродвигателей. Порядок расчета режима самозапуска
- •41. Электробуры (эб) перспективы их применения.
- •42. Электропривод автоматических регуляторов подачи долота
- •43. Регулируемый эп буровых насосов.
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •1) Электромеханические переходные процессы
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •46. Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли Общие положения, назначение и классификация следящих приводов
- •49 Частотное управление ад при постоянном потокосцеплении статора. Структура системы управления.
- •50. Векторное управление асинхронным эд
- •51. Метод пространственного вектора
- •52. Разновидности электрических контактов. Сопротивление электрического контакта
- •1.2.1. Классификация электрических контактов
- •1.2.2. Контактная поверхность и контактное сопротивление
- •1.2.3. Зависимость переходного сопротивления от свойств материала контактов
- •1.2.4. Влияние переходного сопротивления контактов на нагрев проводников
- •1.2.5. Сваривание электрических контактов
- •1.2.6. Износ контактов
- •1.2.7. Параметры контактных конструкций
- •55. Электропривод как система. Структура электропривода
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •58. Инженерные методы оценки точности и качства регулирования координат
- •59. Энергетические показатели электропривода
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •60.Надежност эп. Основные понятия, критерии надёжности
- •6.2 Показатели надёжности
- •6.3 Расчёт показателей надёжности
- •61. Автоматизированный электропривод переменного тока с непосредственным преобразованием частоты (нпч).
- •62. Автоматизированные электроприводы переменного тока с машинами двойного питания.
- •63. Аварийные режимы в аэп с пч с шим.
- •64. Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя.
46. Аэп с синхронными и вентильными двигателями
Представляет собой СД, статорная обмотка которого представляет из себя трехфазную симметричную обмотку, которая может питаться как от сети, так и от силового преобразователя.
Ротор представляет из себя возбудитель с питанием либо от вентильного выпрямителя, либо от управляемого выпрямителя, входящего в состав силового преобразователя, кроме того в качестве возбудителя могут использоваться постоянные магниты вложенные в пазы ротора.
Отличительной особенностью таких ЭП от СД, является наличие вентильного коммутатора, который представляет собой силовой преобразователь частоты управляемый либо в функции положения ротора, либо в функции напряжения подаваемое на статор, либо в функции магнитного потока. При этом вентильный коммутатор (ВК) выполняет в приводе функции аналогичные функциям коллекторного щёточного механизма в машинах постоянного тока.
ВК присоединяется к зажимам статора и выполняет функции распределения постоянного тока, и преобразования его в переменный. Последовательность переключения тока статора за счёт очередности включения управляемых вентилей определяется датчиком положения ротора.
Вентильные приводы (ВП) различают по: 1) типу силовых преобразователей; 2) по виду СУ.
Однако при этом они обладают общими признаками:
возможность регулирования изменением подводимого к статору напряжения (под диапазон вниз);
возможность регулирования изменением тока возбуждения (под диапазон вверх);
возможность регулирования угла опережения вентилей инвертора, входящего в силовой преобразователь относительно фазы ЭДС (под диапазон вверх).
При этом характеристики вентильных приводов могут быть аналогичны характеристикам двигателей постоянного тока последовательного возбуждения, независимого возбуждения, а также характеристикам синхронных ЭП.
Рассмотрим вариант принципиальной схемы ВЭП.
При этом необходимо учесть, что в таких схемах используются два вида силовых преобразователей: а) ПЧ с промежуточным звеном ПТ;
б)
НПЧ. Использование в качестве силового
преобразователя НПЧ позволяет улучшить
энергетические показатели привода,
однако при этом сужаются функциональные
возможности.
УВ1- управляемый выпрямитель; УИ- управляемый инвертор; УВ1, УИ в совокупности образуют силовой ПЧ с промежуточным звеном постоянного тока.
БУВ-
блок управления выпрямителя, при этом
выходной параметр угол управления
зависит от положения ротора двигателя;
БУИ- блок управления инвертором (чаще
всего работает в функции фазы ЭДС
статорной обмотки или напряжения
подводимого к статорной обмотке). При
регулировании вниз обычно обеспечивает
изменение напряжения
при постоянстве
.
При регулировании вверх обеспечивает
увеличение
при постоянстве
.
Совокупность
элементов УВ1, УИ, БУИ и БУВ образует
вентильный коммутатор (ВК). Питание
обмотки возбуждения осуществляется с
помощью УВ2. При этом при изменении
(вниз) реализуется регулирование скорости
вверх (регулирование потоком) при
уменьшении
поток увеличивается. Кроме того
предусматривается питание обмотки
возбуждения ротора последовательно с
выхода управляемого выпрямителя.
Описание схемы работы.
Чаще
всего УИ работает с некоторым постоянным
углом
,
а регулирование скорости производится
изменением выпрямленного напряжения
УВ1 изменением угла
,
при этом
=
const
(регулирование вниз), или при постоянной
,
а
изменяется (регулирование вверх). Иногда
для реализации регулирования вверх
=const,
=
const,
изменяется. При этом в ВЭП можно получить
характеристики аналогично ДПТ с
независимым возбуждением с теми же
показателями. Кроме того в ВЭП можно
получить ДПТ последовательного
возбуждения , если при этом обмотка
возбуждения включена последовательно
в цепь выпрямленного тока на выходе
инвертора.
Основная функция рассматриваемого ЭП – регулирование скорости вращения в широких пределах и с высокими ПК.
ПК регулирования.
Двухзонное.
Д
ополнительная
нагрузка на валу: при
=
const,
=var,
целесообразно регулировать при М= const
(поршневые насосы). При изменении
целесообразно регулировать при Р= const
и моменте изменяющемуся по закону
гиперболы
.
При
=
var,
=
const регулируются центробежные насосы.Экономичность: в целом высокая при регулировании вверх выше, чем при регулировании вниз. Возможность регулирование с опережающим cos .
Стабильность высокая при регулировании вниз и при регулировании вверх изменением . Низкая при регулировании вверх при изменении (при этом жесткость характеристики уменьшается).
Плавность высокая.
Диапазон регулирования больше 100 к 1. Кроме того обеспечивается возможность легкого и плавного запуска привода, а также достижение большого тягового момента на малых скоростях.
