Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Интегрирование функций.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
320.72 Кб
Скачать

Интегрирование по частям

Интегрирование по частям - приём, который применяется почти так же часто, как и замена переменной. Пусть u(x) и v(x) - функции, имеющие непрерывные частные производные. Тогда по формуле дифференцирования произведения d(uv) = u∙dv + v∙du . Находим неопределённые интегралы для обеих частей этого равенства (при этом ):

.

Эта формула и называется формулой интегрирования по частям. Часто ее записывают в производных (dv = vdx , du = udx):

.

Примеры:

. .

Формула интегрирования по частям может применяться неоднократно. При наличии небольшого опыта в простых интегралах нет необходимости выписывать промежуточные выкладки (u = …, dv = …), можно сразу применять формулу, представив интеграл в виде :

.

Приведённые примеры показывают, для каких функций надо применять (или попытаться применить) формулу интегрирования по частям:

1. Интегралы вида , , , где Pn(x) - многочлен n-ой степени. Так, для имеем , , и . В результате мы получили интеграл того же типа с многочленом степени на единицу меньше. После n-кратного применения формулы степень многочлена уменьшится до нуля, т.е. многочлен превратится в постоянную, и интеграл сведётся к табличному.

2. Интегралы , где - трансцендентная функция, имеющая дробно-рациональную или дробно-иррациональную производную (ln x, arctg x, arcctg x, arcsin x, arcos x). В этом случае имеет смысл взять u = f(x), dv = Pn(x)dx, для того, чтобы в интеграле участвовала не f(x), а её производная.

Пример:

.

3. Для некоторых функций применяется приём “сведения интеграла к самому себе”. С помощью интегрирования по частям (возможно, неоднократного) интеграл выражается через такой же интеграл; в результате получается уравнение относительно этого интеграла, решая которое, находим значение интеграла.

4. Ещё один вид формул, которые обычно получаются с помощью интегрирования по частям, и используются для нахождения интегралов - рекуррентные соотношения. Если подынтегральная функция зависит от некоторого параметра n, и получено соотношение, которое выражает интеграл через аналогичный интеграл с меньшим значением n, то это соотношение и называется рекуррентным соотношением.

Определенный интеграл. Формула Ньютона-Лейбница

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю:

где

Свойства определенного интеграла

Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].

  1. где k - константа;

  2. Если для всех , то .

  3. Если в интервале [a, b], то

Формула Ньютона-Лейбница

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a, b], то

Площадь криволинейной трапеции

Площадь фигуры, ограниченной осью 0x, двумя вертикальными прямыми x = a, x = b и графиком функции f (x) (рисунок 1), определяется по формуле

Рис.1

Рис.2

Пусть F (x) и G (x) - первообразные функций f (x) и g (x), соответственно. Если f (x) ≥ g (x) на замкнутом интервале [a, b], то площадь области, ограниченной двумя кривыми y = f (x), y = g (x) и вертикальными линиями x = a, x = b (рисунок 2), определяется формулой