
- •Системы коммутации
- •Глава 9 Программное управление 223
- •Глава 10 Эксплуатационное управление 247
- •Глава 11 Услуги 269
- •Глава 1
- •1.1 Телекоммуникации
- •1.2 Телефонные сети общего пользования
- •1.3 Коммутация
- •1.4 Методы коммутации
- •1.5 Эволюция телефонных станций 1.5.1 Исторические предпосылки
- •1.5.2 Ручные коммутаторы
- •1.5.3 Автоматическая коммутация
- •1.5.4 Квазиэлектронные и электронные атс
- •1.5.5 Цифровые атс
- •1.6 Телефонные аппараты
- •1.7 Стандартизация в области коммутации
- •Глава 2
- •2.1 Основные принципы дш атс
- •2.2 Искатели
- •2.3 Вынужденное и свободное искание. Ступени искания
- •2.3.1 Предварительное искание
- •2.3.2 Линейное искание
- •2.3.3 Групповое искание
- •2.4 Импульсный набор номера
- •2.5 Межстанционные соединительные линии
- •Глава 3
- •3.1 Координатные соединители
- •3.3 Городские координатные станции атск и атск-у
- •3.4 Сельские координатные атс к-50/200м
- •3.5 Координатные атск-100/2000
- •3.6 Координатные атс типа а-204
- •Глава 4
- •4.1 Цифровая телефония
- •4.2 Цифровые атс
- •4.3 Абонентские модули
- •4.4 Доступ к услугам isdn
- •4.5.1 Пространственная коммутация
- •4.5.2 Временная коммутация
- •4.5.3 Коммутация sts (пространство-время-пространство)
- •4.5.4 Коммутация tst (время-пространство-время)
- •4.6 Модули соединительных линий, синхронизация и служебные функции
- •4.7 Управление по записанной программе
- •Глава 5
- •5.1 Выбор атс
- •5.2 Станции 5ess. Решения Lucent Technologies
- •5.3 Система 12
- •5.4 Система ewsd компании Siemens
- •5.5 Станция ахе-10 компании Ericsson
- •5.6 Итальянская платформа Linea ut и стратегия iMss
- •5.7 Коммутационная платформа neax-61 компании nec
- •5.8 Станции dms 100
- •Глава 6
- •6.1 Первые разработки атс с программным управлением
- •6.2 Коммутационная платформа атсц-90
- •6.3 Новые функции цифровых атс
- •6.4 Система с-32
- •6.5 Бета, Сигма, Омега, Кразар и другие
- •6.6 Развитие отечественных коммутационных платформ
- •Глава 7
- •7.1 Глобальная информационная инфраструктура
- •7.2 Цифровые абонентские концентраторы и мультиплексоры
- •7.3 Интерфейс v5
- •7.4 Беспроводный абонентский доступ wll
- •7.5 Оптическое волокно в абонентской линии
- •7.6 Цифровые абонентские линии dsl
- •Глава 8
- •8.1 Элементы телефонной сигнализации
- •8.2 Сигнализация по выделенным сигнальным каналам
- •8.3 Многочастотная сигнализация
- •8.4 Общеканальная сигнализация № 7
- •8.4.2 Подсистема управления сигнальными соединениями sccp
- •8.4.3 Подсистема средств транзакций
- •8,4.4 Подсистема isup
- •8.5 Сигнализация при конвергенции сетей связи
- •Глава 9
- •9.1 Программное обеспечение коммутационных узлов и станций
- •9.2 Управляющие устройства
- •9.2.1 Централизованное управление
- •9.2.2 Иерархическое управление
- •9.2.3 Распределенная архитектура
- •9.3 Основы программирования обслуживания вызовов в реальном времени
- •9.5 Качество по
- •9.6 Программные системы современных атс
- •Глава 10
- •10.1 Эволюция функций эксплуатационного управления системами коммутации
- •10.2 Сопровождение программного обеспечения
- •10.3 Задачи сорм и информационной безопасности
- •10.4 Расчеты за услуги связи
- •10.5 Взаимодействие «человек-машина»
- •10.6 Концепция tmn
- •10.7 Системы эксплуатационной поддержки oss
- •Глава 11 Услуги
- •11.1 Дополнительные услуги атс
- •11.2 Интеллектуальная сеть (in)
- •11.3 Компьютерная телефония (cti)
9.2 Управляющие устройства
Описанию различных вариантов организации устройств программного управления коммутацией в недавнем прошлом было посвящено немало публикаций, объем которых постепенно уменьшался по мере качественного изменения самих этих устройств в полном соответствии с законом Мура. Описываемое этим законом снижение стоимости микропроцессорных управляющих устройств одновременно с радикальным увеличением их производительности погасило былые споры между сторонниками централизованной и распределенной архитектур программного управления и привело к тому, что в большинстве современных цифровых АТС используется архитектура, представляющая собой что-то среднее между двумя названными подходами. Сегодняшние варианты архитектуры управления цифровой коммутацией можно разделить на три типа: централизованное управление, иерархическое управление и распределенное управление.
9.2.1 Централизованное управление
Архитектура централизованного управления условно изображена на рис. 9.1. Эта архитектура восходит к началу сорокалетней истории развития электронных узлов коммутации, управляемых ЭВМ, которая началась в ноябре 1960 года в г. Морис (штат Иллинойс, США) испытаниями прототипа электронной АТС. В 1965 году в г. Сак-касана (Нью-Джерси, США) была сдана в эксплуатацию серийная электронная система коммутации ESS-1 с управлением по записанной программе, базирующаяся исключительно на центральном процессоре, который управляет всеми функциями системы. Отечественный ИВТУ, рассмотренный в главе 6, полностью соответствует структуре, показанной на рис. 9.1.
Рис. 9.1 Структура АТС с централизованным программным управлением
Централизованное программное управление этих АТС предусматривает выполнение следующих трех групп функций:
• управление обслуживанием вызова, включая анализ имеющейся в базе данных информации, относящейся к вызываемому абоненту, прием набираемого номера, контроль процесса обслуживания вызова во всех фазах этого процесса, включая фазы отбоя и разъединения; управление коммутацией, для чего в зависимости от структуры АТС используются разные методы, но в любом случае центральный процессор хранит отображение всех путей (и свободных, и используемых), находит и резервирует путь для запрашиваемого абонентским или линейным модулем соединения;
контроль, диагностика и восстановление системы, включающие диагностику неисправностей и восстановления рабочей конфигурации системы, что обсуждается в следующей главе. Здесь отметим лишь, что при централизованном управлении центральный процессор управляет, наряду с коммутацией, и функциями технического обслуживания, административного управления, контроля, диагностики и восстановления системы, для чего он должен обладать достаточной вычислительной мощностью.
9.2.2 Иерархическое управление
Архитектура иерархического управления отличается от архитектуры, приведенной на рис. 9.1, тем, что она предусматривает не один, а несколько периферийных процессоров, которые оказывают помощь центральному процессору, беря на себя функции управления отдельными периферийными подсистемами станции (абонентскими модулями, модулями соединительных линий и др.). Периферийные процессоры обычно представляют собой микропроцессорные устройства, управляющие каждый своей подсистемой. Они сканируют линии, запрашивают информацию от центрального процессора и передают ему данные, нужные для обновления абонентской базы данных и для управления соединениями, тогда как центральный процессор выполняет основные функции обработки вызовов и управления коммутационным узлом в целом и несет при этом меньшую нагрузку, чем тот же процессор в архитектуре централизованного управления. В результате, как правило, пропускная способность управляющей системы увеличивается.
Определенный недостаток этой архитектуры -ограниченная масштабируемость управляющего комплекса по мере роста емкости АТС: ведь, как и в архитектуре централизованного управления, вся обработка вызовов централизована. Кроме того, восстановление системы в случае сбоя полностью зависит от центрального процессора. Он же обрабатывает и всю информацию, связанную с начислением платы за услуги связи.