
- •1.Введение
- •Глава 2.Титан.
- •Глава 2.1.Титанановые сплавы, используемые в самолетостроении.
- •Глава 2.2. Влияние примесей на титановые сплавы.
- •Глава 2.3. Повышение чистоты сплавов.
- •Глава 2.4. Цена на титан и титановые сплавы.
- •Глава 2.5.Коммерциализация титана в новых областях применения.
- •Глава 2.6.Использование титановых сплавов в авиации в будущем.
- •Глава 3. Заключение.
- •Список литературы.
Глава 2.6.Использование титановых сплавов в авиации в будущем.
|
|
Авиационная промышленность была первым потребителем титана. Создание летательных аппаратов со скоростями близкими к скорости звука и превосходящими ее, определило ряд технических и экономических требований к конструкционным материалам, идущим на изготовление корпуса самолета и его обшивки, а также двигателей, которые невозможно было удовлетворить без применения материалов на основе титана. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами. В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430° С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов. Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей. При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей. Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя. В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов. Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д. Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана. Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок. Вращающиеся детали роторов авиадвигателей испытывают в полете колоссальную нагрузку. Им приходится работать в условиях высоких температур и динамических воздействий. От их надежности зависят безопасность самолета и жизни людей, что находятся на борту воздушного судна. Следовательно, титан, используемый в этих ответственных узлах, должен быть не просто прочным, а суперпрочным. Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д. Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков. В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52. Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг. В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета. Растет потребление титана в гражданском самолетостроении. И понятно почему: титан сочетает в себе основные параметры эффективности самолета – веса, надежности, стоимости обслуживания и прибыли от эксплуатации. Это главные критерии для авиаперевозчиков. В настоящее время разработчики авиатехники перестраивают всю материаловедческую концепцию строительства самолетов, активно привлекая и используя композиционные материалы на основе углеволокна и титановые сплавы. Первые заменяют алюминий и сталь, вторые коррозийноустойчивы и исключительно прочны. Причин перехода на композиционные материалы несколько. Во-первых, наметился быстрый рост пассажирских и грузовых перевозок, объем которых, по прогнозам специализированной аналитической группы Airline Monitor, в период с 2008 по 2026 год увеличится втрое, что потребует в два раза увеличить парк магистральных авиалайнеров. Во-вторых, в условиях высоких цен на топливо cамолетостроительным компаниям приходится разрабатывать и готовить серийный выпуск экономичных моделей авиалайнеров. Поскольку с композитами «уживается» только титан, спрос гражданского самолетостроения на титановые полуфабрикаты возрастет к 2015 году примерно в два раза. В «самолете мечты» Boeing 787 – лидере нового поколения самолетов – половина применяемого титана – ВСМПО-АВИСМЫ. В самолете использован новый высокопрочный титановый сплав VST 5553, созданный профессионалами ВСМПО. Из него изготавливают десятки наименований штамповок, в производстве которых ВСМПО нет равных. А первый заказ на продукцию российской корпорации ВСМПО-АВИСМА Boeing разместил в 1997 году. Самая большая штамповка балки шасси самолета А380 весом 3,5 тонны изготовлена из титана ВСМПО-АВИСМА. Таких крупногабаритных изделий больше никто делать не может. Изготавливают штамповки на модернизированном кузнечном оборудовании, самом мощном в мире. В заказах такого гранда авиации, как Boeing, доля российского титана составляет 30–40%, в европейской компании Airbus – 55–60%, бразильской Embraer – 90%, в канадской Goodrich – крупнейшего в мире производителя шасси – 90%. Как видно на рисунке 1. Потребление титана в России , Спрос на титан будет увеличиваться постепенно , опираясь на авиастроение. |
Рис .1. Потребление титана в России с 2006 -2015 год