
- •1. Цифровые сигналы. Обработка цифровых сигналов.
- •2. Функциональные преобразования сигналов. Операции цифровой обработки.
- •3. Области применения цифровой обработки сигналов. Синтез цифровых рекурсивных фильтров методом частотного преобразования
- •4. Полосовой цифровой фильтр Баттерворта
- •5. Цифровые фильтры Чебышева.
- •Операции цифровой обработки сигналов. Линейная свертка. Корреляция сигналов. Линейная цифровая фильтрация. Модуляция сигналов.
- •Высокочастотный цифровые фильтры Баттерворта.
- •Передаточные функции фильтров
- •10. Цифровые фильтры обработки одномерных сигналов.
- •11. Нерекурсивные и рекурсивные цифровые фильтры.
- •12. Импульсная реакция фильтров. Передаточные функции фильтров.
- •14. Рекурсивные цифровые фильтры.
- •15. Конструкция рекурсивных цифровых фильтров.
- •16. Каскадная и параллельная форма
- •17. Режекторные и селекторные фильтры.
- •18. Цифровые фильтры
- •19. Частотные характеристики фильтров.
- •20. Фазовая и групповая задержка сигналов.
- •Билинейное z-преобразование при синтезе рекурсивных цифровых фильтров.
- •Деформация частотной шкалы.
- •Виды рекурсивных фильтров.
- •26 Фильтры сглаживания сигналов.
- •28. Фильтры мнк 1-го, 2-го и 4-го порядка.
- •32. Пространство z - полиномов. Аналитическая форма z-образов.
- •В общем случае, множества z, для которых полиномы s(z) сходится, образуют на z-плоскости.
- •33. Фильтры сглаживания сигналов методом наименьших квадратов.
- •34. Импульсные реакции и частотные характеристики фильтров. Модификации фильтров. Оптимизация сглаживания. Расчет простого цифрового фильтра по частотной характеристике.
- •Удобным методом решения разностных уравнений линейных систем является именно z-преобразование.
- •Разностные операторы.
- •Выделение в сигналах шумов
- •Восстановление утраченных или пропущенных данных.
- •Аппроксимация производных. Частотные характеристики операторов
- •40.Нерекурсивные частотные цифровые фильтры.
- •41.Типы фильтров. Методика расчетов. Идеальные частотные фильтры.
- •Конечные приближения идеальных фильтров. Применение весовых функций.
- •Гладкие частотные фильтры.
- •Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
- •Идеальные фильтры. Конечные приближения идеальных фильтров.
- •47.Применение весовых функций.
- •48. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
- •49. Спектры мощности случайных сигналов
- •50. Усиление шумов. Весовые функции.
- •51.Явление Гиббса. Параметры эффекта.
- •52. Последствия для практики. Нейтрализация явления Гиббса.
- •53. Основные весовые функции
- •54.Фильтрация случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала.
- •55. Взаимный спектр мощности входного и выходного сигналов.
- •56. Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
- •57. Рекурсивные частотные цифровые фильтры Чебышева.
- •58. Передаточная функция цифрового фильтра. Методика расчета фильтров.
- •21. Структурные схемы цифровых фильтров.
14. Рекурсивные цифровые фильтры.
Фильтры, которые описываются полным разностным уравнением (2.1.2)
y(k) = bn x(k-n) – am y(k-m),
принято называть рекурсивными цифровыми фильтрами (РЦФ), так как в вычислении текущих выходных значений участвуют не только входные данные, но и значения выходных данных фильтрации, вычисленные в предшествующих циклах расчетов. С учетом последнего фактора рекурсивные фильтры называют также фильтрами с обратной связью, положительной или отрицательной в зависимости от знака суммы коэффициентов am. Полное окно фильтра состоит из нерекурсивной части bn, ограниченной в работе текущими и "прошлыми" значениями входного сигнала (на ЭВМ возможно использование и “будущих” отсчетов сигнала) и рекурсивной части am, которая работает с "прошлыми" значениями выходного сигнала
15. Конструкция рекурсивных цифровых фильтров.
отображается в z-образе передаточной функции фильтра в виде отношения двух многочленов:
H(z) = H0+H1z+H2z2+...= B(z)/[1+A(z)], (9.1.1)
где: B(z) = B0+B1z+B2z2+ ... +BNzN, A(z) = A1z+A2z2+ ... +AMzM.
Естественно, что переход на РЦФ имеет смысл только в том случае, если степень многочленов A(z) и B(z) во много раз меньше степени многочлена H(z) прямого z-преобразования импульсной реакции фильтра. При z-образе входных данных Х(z), на выходе РЦФ имеем:
Y(z) = H(z)Х(z) = X(z)B(z)/[1+A(z)],
Y(z)[1+A(z)] = Y(z)+Y(z)A(z) = X(z)B(z),
Y(z) = X(z)B(z)-Y(z)A(z). (9.1.2)
При обратном z-преобразовании выражения (9.1.2) получаем уравнение рекурсивной цифровой фильтрации:
yk = bn xk-n – am yk-m. (9.1.3)
Рекурсивная фильтрация требует задания начальных условий как по xk, так и по yk при k<0. Схема рекурсивной фильтрации приведена на рис. 9.1.1.
Рис. 9.1.1. Схема РЦФ.
16. Каскадная и параллельная форма
Каскадная форма. Находятся корни многочленов А(z), B(z) и производится разложение H(z):
H(z) =
,
(9.1.4)
где G - масштабный множитель. Это позволяет применять каскадное построение фильтров, показанное на рис. 9.1.2, в котором:
H(z) = G H1(z) H2(z) ..... HN(z),
Hn(z) = Bn(z)/An(z). (9.1.5)
Функции Аn(z) и Bn(z) обычно представляются в виде биквадратных блоков (фильтров второго порядка):
Bn(z) = bn.0 + bn.1 z + bn.2 z2, An(z) = 1 + an.1 z + an.2 z2.
Параллельная форма. Функция H(z) разлагается на элементарные дроби:
H(z) =
Ho(z)
Bn(z)
/ [1+An(z)],
что дает параллельную форму фильтра, показанную на рис. 9.1.3. Параллельная конструкция фильтра применяется реже каскадной, хотя это может объясняться и тем, что в аналоговых фильтрах, исторически предшествовавших цифровым фильтрам, теоретическая база анализа и синтеза каскадных рекурсивных фильтров получила детальное развитие.