
- •1. Цифровые сигналы. Обработка цифровых сигналов.
- •2. Функциональные преобразования сигналов. Операции цифровой обработки.
- •3. Области применения цифровой обработки сигналов. Синтез цифровых рекурсивных фильтров методом частотного преобразования
- •4. Полосовой цифровой фильтр Баттерворта
- •5. Цифровые фильтры Чебышева.
- •Операции цифровой обработки сигналов. Линейная свертка. Корреляция сигналов. Линейная цифровая фильтрация. Модуляция сигналов.
- •Высокочастотный цифровые фильтры Баттерворта.
- •Передаточные функции фильтров
- •10. Цифровые фильтры обработки одномерных сигналов.
- •11. Нерекурсивные и рекурсивные цифровые фильтры.
- •12. Импульсная реакция фильтров. Передаточные функции фильтров.
- •14. Рекурсивные цифровые фильтры.
- •15. Конструкция рекурсивных цифровых фильтров.
- •16. Каскадная и параллельная форма
- •17. Режекторные и селекторные фильтры.
- •18. Цифровые фильтры
- •19. Частотные характеристики фильтров.
- •20. Фазовая и групповая задержка сигналов.
- •Билинейное z-преобразование при синтезе рекурсивных цифровых фильтров.
- •Деформация частотной шкалы.
- •Виды рекурсивных фильтров.
- •26 Фильтры сглаживания сигналов.
- •28. Фильтры мнк 1-го, 2-го и 4-го порядка.
- •32. Пространство z - полиномов. Аналитическая форма z-образов.
- •В общем случае, множества z, для которых полиномы s(z) сходится, образуют на z-плоскости.
- •33. Фильтры сглаживания сигналов методом наименьших квадратов.
- •34. Импульсные реакции и частотные характеристики фильтров. Модификации фильтров. Оптимизация сглаживания. Расчет простого цифрового фильтра по частотной характеристике.
- •Удобным методом решения разностных уравнений линейных систем является именно z-преобразование.
- •Разностные операторы.
- •Выделение в сигналах шумов
- •Восстановление утраченных или пропущенных данных.
- •Аппроксимация производных. Частотные характеристики операторов
- •40.Нерекурсивные частотные цифровые фильтры.
- •41.Типы фильтров. Методика расчетов. Идеальные частотные фильтры.
- •Конечные приближения идеальных фильтров. Применение весовых функций.
- •Гладкие частотные фильтры.
- •Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
- •Идеальные фильтры. Конечные приближения идеальных фильтров.
- •47.Применение весовых функций.
- •48. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
- •49. Спектры мощности случайных сигналов
- •50. Усиление шумов. Весовые функции.
- •51.Явление Гиббса. Параметры эффекта.
- •52. Последствия для практики. Нейтрализация явления Гиббса.
- •53. Основные весовые функции
- •54.Фильтрация случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала.
- •55. Взаимный спектр мощности входного и выходного сигналов.
- •56. Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
- •57. Рекурсивные частотные цифровые фильтры Чебышева.
- •58. Передаточная функция цифрового фильтра. Методика расчета фильтров.
- •21. Структурные схемы цифровых фильтров.
4. Полосовой цифровой фильтр Баттерворта
низкочастотного и высокочастотного фильтра при перекрытии полосы пропускания фильтров. Аналогичный эффект достигается и частотным преобразованием ФНЧ, которое в этом случае имеет вид:
p = s+1/s. (6.3.1)
Подставив в (6.3.1) значения p = jW и s = jw, получим:
W = [w2-1]/w,
w2-Ww-1 = 0. (6.3.2)
Корни уравнения (6.3.2):
(w)1,2
= W/2
.
(6.3.3)
Передаточная функция. При применении преобразования (6.3.1) к передаточной функции в полиномиальной форме (6.1.11), получаем:
H(p)
= G
1/(p-pm)
G
s/(s2-pm
s+1)
= H(s), (6.3.10)
Выражение (6.3.10) не требует нахождения полюсов, т.к. они уже известны и определяются выражением (6.3.9). С учетом этого функция H(s) может быть записана с объединением в биквадратные блоки комплексно сопряженных полюсов с вещественными коэффициентами:
H(s) = G s/[(s-sm)(s-s*m)] = G s/(s2+am s+gm), (6.3.11)
где значения аm и gm могут быть определены непосредственно по полюсам (6.3.9):
am = -2 Re sm, gm = (Re sm)2 + (Im sm)2 = |sm|2. (6.3.12)
5. Цифровые фильтры Чебышева.
Фильтры первого рода. Фильтры Чебышева с пульсациями передаточной функции в полосе пропускания и гладким затуханием в полосе подавления называют фильтрами Чебышева первого рода, в отличие от инверсных фильтров Чебышева (второго рода). Аппроксимационная формула фильтров Чебышева первого рода определяется выражением:
|H(W)|2 = 1/ [1+N2 TN2(W)], (6.4.1)
где ТN(W) - многочлен Чебышева N-го порядка:
Tn(W) =
cos(n arccos(W)), W
1.
(6.4.2)
= ch(n arcch(W)), W>1. n = 1,2,...
Критерий приближения Чебышева, который широко используется не только в теории фильтров - минимум максимальной ошибки приближения (минимаксное приближение). В соответствии с этим приближением параметры передаточной функции подбираются таким образом, чтобы в полосе передачи АЧХ наблюдались равноволновые пульсации коэффициента передачи, которые являются "платой" за повышение крутизны среза фильтра.
Полиномы Чебышева вычисляются по рекуррентной формуле:
Tn(W) = 2W Tn-1(W) - Tn-2(W), (6.4.3)
T1(W) = W, To(W) = 1.
Для ФНЧ при W = /p имеет место Тn(1) = 1, |H(W)|2 = 1/(1+2) и значением задается коэффициент пульсаций в полосе передачи. При задании полосы по уровню Аp значение рассчитывается аналогично фильтру Баттеруорта.
Соответственно, при задании Аs на границе полосы подавления, имеем:
1/(1+2 TN2(s/p)) = As2.
N
= arcch[
/]
/ arcch(s/p).
Дальнейшие расчеты идентичны расчетам фильтров Баттеруорта, равно как и частотные преобразования фильтров ФНЧ в ФВЧ и ПФ.
Фильтры второго рода. Для фильтров Чебышева второго рода, с гладкой передаточной характеристикой в зоне пропускания и равноволновыми пульсациями в зоне подавления, используется функция:
|H(W)|2 = 1/[1+2(TN2(Ws)/TN2(Ws/W))], (6.4.6)
где W = /p, Ws = s/p. Условие задания параметра остается без изменений. На границе полосы подавления при = s: 1+2TN2(s/p) = 1/As2, откуда значение N также определяется аналогично фильтру первого рода. Дальнейший порядок расчетов фильтров Чебышева второго рода не отличается от фильтров первого рода.