
- •1. Цифровые сигналы. Обработка цифровых сигналов.
- •2. Функциональные преобразования сигналов. Операции цифровой обработки.
- •3. Области применения цифровой обработки сигналов. Синтез цифровых рекурсивных фильтров методом частотного преобразования
- •4. Полосовой цифровой фильтр Баттерворта
- •5. Цифровые фильтры Чебышева.
- •Операции цифровой обработки сигналов. Линейная свертка. Корреляция сигналов. Линейная цифровая фильтрация. Модуляция сигналов.
- •Высокочастотный цифровые фильтры Баттерворта.
- •Передаточные функции фильтров
- •10. Цифровые фильтры обработки одномерных сигналов.
- •11. Нерекурсивные и рекурсивные цифровые фильтры.
- •12. Импульсная реакция фильтров. Передаточные функции фильтров.
- •14. Рекурсивные цифровые фильтры.
- •15. Конструкция рекурсивных цифровых фильтров.
- •16. Каскадная и параллельная форма
- •17. Режекторные и селекторные фильтры.
- •18. Цифровые фильтры
- •19. Частотные характеристики фильтров.
- •20. Фазовая и групповая задержка сигналов.
- •Билинейное z-преобразование при синтезе рекурсивных цифровых фильтров.
- •Деформация частотной шкалы.
- •Виды рекурсивных фильтров.
- •26 Фильтры сглаживания сигналов.
- •28. Фильтры мнк 1-го, 2-го и 4-го порядка.
- •32. Пространство z - полиномов. Аналитическая форма z-образов.
- •В общем случае, множества z, для которых полиномы s(z) сходится, образуют на z-плоскости.
- •33. Фильтры сглаживания сигналов методом наименьших квадратов.
- •34. Импульсные реакции и частотные характеристики фильтров. Модификации фильтров. Оптимизация сглаживания. Расчет простого цифрового фильтра по частотной характеристике.
- •Удобным методом решения разностных уравнений линейных систем является именно z-преобразование.
- •Разностные операторы.
- •Выделение в сигналах шумов
- •Восстановление утраченных или пропущенных данных.
- •Аппроксимация производных. Частотные характеристики операторов
- •40.Нерекурсивные частотные цифровые фильтры.
- •41.Типы фильтров. Методика расчетов. Идеальные частотные фильтры.
- •Конечные приближения идеальных фильтров. Применение весовых функций.
- •Гладкие частотные фильтры.
- •Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
- •Идеальные фильтры. Конечные приближения идеальных фильтров.
- •47.Применение весовых функций.
- •48. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
- •49. Спектры мощности случайных сигналов
- •50. Усиление шумов. Весовые функции.
- •51.Явление Гиббса. Параметры эффекта.
- •52. Последствия для практики. Нейтрализация явления Гиббса.
- •53. Основные весовые функции
- •54.Фильтрация случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала.
- •55. Взаимный спектр мощности входного и выходного сигналов.
- •56. Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
- •57. Рекурсивные частотные цифровые фильтры Чебышева.
- •58. Передаточная функция цифрового фильтра. Методика расчета фильтров.
- •21. Структурные схемы цифровых фильтров.
Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
А)От z-образов сигналов и передаточных функций подстановкой z = exp(-jt) в уравнение (1.3.2) можно перейти к Фурье-образам функций, т.е. к частотным спектрам сигналов и частотной характеристике фильтров, а точнее – к функциям их спектральных плотностей.
Можно применить и способ получения частотных характеристик непосредственно из разностного уравнения системы обработки данных. Так как цифровая фильтрация относится к числу линейных операций, то, принимая для сигнала на входе фильтра выражение x(kt) = B() exp(jkt), мы вправе ожидать на выходе фильтра сигнал y(kt) = A() exp(jkt).
Дифференцирующие цифровые фильтры.Передаточная функция. Из выражения для производной d(exp(jt))/dt = j exp(jt) следует, что при расчете фильтра производной массива данных необходимо аппроксимировать рядом Фурье передаточную функцию вида H() = j. Поскольку коэффициенты такого фильтра будут обладать нечетной симметрией (h-n = -hn) и выполняется равенство hn [exp(jn)-exp(-jn)] = 2j hn sin n, то передаточная характеристика фильтра имеет вид: H() = 2j(h1 sin + h2 sin 2+ ... + hN sin N), т.е. является мнимой нечетной, a сам фильтр является линейной комбинацией разностей симметрично расположенных относительно sk значений функции. Уравнение фильтрации:yn = hn(sk+n - sk-n).
Идеальные фильтры. Конечные приближения идеальных фильтров.
Идеальным полосовым фильтром называется фильтр, имеющий единичную амплитудно-частотную характеристику в полосе от определенной нижней частоты wн до определенной верхней частоты wв, и нулевой коэффициент передачи за пределами этой полосы (для цифровых фильтров - в главном частотном диапазоне).
Импульсная реакция
фильтра (коэффициенты оператора)
находится преобразованием Фурье заданной
передаточной функции H(w). В общем случае:
h(nDt) = (1/2p)
H(w)
exp(jwnDt) dw.
Для получения вещественной функции импульсного отклика фильтра действительная часть передаточной функции должна быть четной, а мнимая - нечетной.
Для идеального полосового фильтра H(w)=1 в полосе частот от wн до wв, и интеграл (4.2.1) вычисляется в этих пределах. Идеальные фильтры низких и высоких частот можно считать частными случаями идеальных полосовых фильтров с полосой пропускания от 0 до wв для низкочастотного и от wн до wN для высокочастотного фильтра.
Конечные приближения идеальных фильтров Оператор идеального частотного НЦФ, как это следует из выражения (4.2.2 h(n) = (А/p) [wв sinc(nwв) - wн sinc(nwн)],), представляет собой бесконечную затухающую числовую последовательность, реализующую заданную передаточную функцию:
H(w) =
h(n)
cos nw. (4.3.1)
На практике бесконечный ряд (4.3.1) всегда приходится ограничивать определенным числом членов его конечного приближения
H'(w) =
h(n)
cos nw,где sinc(nw) = sin(nw)/(nw) - функция интегрального
синуса (функция отсчетов), бесконечная
по координате w.
46.Идеальные фильтры. Конечные приближения идеальных фильтров.
Идеальным полосовым фильтром называется фильтр, имеющий единичную амплитудно-частотную характеристику в полосе от определенной нижней частоты wн до определенной верхней частоты wв, и нулевой коэффициент передачи за пределами этой полосы (для цифровых фильтров - в главном частотном диапазоне).
Импульсная реакция
фильтра (коэффициенты оператора)
находится преобразованием Фурье заданной
передаточной функции H(w). В общем случае:
h(nDt) = (1/2p)
H(w)
exp(jwnDt) dw.
Для получения вещественной функции импульсного отклика фильтра действительная часть передаточной функции должна быть четной, а мнимая - нечетной.
Для идеального полосового фильтра H(w)=1 в полосе частот от wн до wв, и интеграл (4.2.1) вычисляется в этих пределах. Идеальные фильтры низких и высоких частот можно считать частными случаями идеальных полосовых фильтров с полосой пропускания от 0 до wв для низкочастотного и от wн до wN для высокочастотного фильтра.
При H(w)=A=1 в полосе пропускания wн -wв, и H(w)=0 за ее пределами, для идеальных симметричных полосовых НЦФ из (4.2.1) в общем виде получаем:
h(n) = (А/p) [wв sinc(nwв) - wн sinc(nwн)], (4.2.2)
ho = (wв - wн)/p, h(n) = (sin nwв - sin nwн)/(np).
где sinc(nw) = sin(nw)/(nw) - функция интегрального синуса (функция отсчетов), бесконечная по координате w.
Конечные приближения идеальных фильтров Оператор идеального частотного НЦФ, как это следует из выражения (4.2.2 h(n) = (А/p) [wв sinc(nwв) - wн sinc(nwн)],), представляет собой бесконечную затухающую числовую последовательность, реализующую заданную передаточную функцию:
H(w) = h(n) cos nw. (4.3.1)
На практике бесконечный ряд (4.3.1) всегда приходится ограничивать определенным числом членов его конечного приближения
H'(w) = h(n) cos nw,где sinc(nw) = sin(nw)/(nw) - функция интегрального синуса (функция отсчетов), бесконечная по координате w.