
- •1. Цифровые сигналы. Обработка цифровых сигналов.
- •2. Функциональные преобразования сигналов. Операции цифровой обработки.
- •3. Области применения цифровой обработки сигналов. Синтез цифровых рекурсивных фильтров методом частотного преобразования
- •4. Полосовой цифровой фильтр Баттерворта
- •5. Цифровые фильтры Чебышева.
- •Операции цифровой обработки сигналов. Линейная свертка. Корреляция сигналов. Линейная цифровая фильтрация. Модуляция сигналов.
- •Высокочастотный цифровые фильтры Баттерворта.
- •Передаточные функции фильтров
- •10. Цифровые фильтры обработки одномерных сигналов.
- •11. Нерекурсивные и рекурсивные цифровые фильтры.
- •12. Импульсная реакция фильтров. Передаточные функции фильтров.
- •14. Рекурсивные цифровые фильтры.
- •15. Конструкция рекурсивных цифровых фильтров.
- •16. Каскадная и параллельная форма
- •17. Режекторные и селекторные фильтры.
- •18. Цифровые фильтры
- •19. Частотные характеристики фильтров.
- •20. Фазовая и групповая задержка сигналов.
- •Билинейное z-преобразование при синтезе рекурсивных цифровых фильтров.
- •Деформация частотной шкалы.
- •Виды рекурсивных фильтров.
- •26 Фильтры сглаживания сигналов.
- •28. Фильтры мнк 1-го, 2-го и 4-го порядка.
- •32. Пространство z - полиномов. Аналитическая форма z-образов.
- •В общем случае, множества z, для которых полиномы s(z) сходится, образуют на z-плоскости.
- •33. Фильтры сглаживания сигналов методом наименьших квадратов.
- •34. Импульсные реакции и частотные характеристики фильтров. Модификации фильтров. Оптимизация сглаживания. Расчет простого цифрового фильтра по частотной характеристике.
- •Удобным методом решения разностных уравнений линейных систем является именно z-преобразование.
- •Разностные операторы.
- •Выделение в сигналах шумов
- •Восстановление утраченных или пропущенных данных.
- •Аппроксимация производных. Частотные характеристики операторов
- •40.Нерекурсивные частотные цифровые фильтры.
- •41.Типы фильтров. Методика расчетов. Идеальные частотные фильтры.
- •Конечные приближения идеальных фильтров. Применение весовых функций.
- •Гладкие частотные фильтры.
- •Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
- •Идеальные фильтры. Конечные приближения идеальных фильтров.
- •47.Применение весовых функций.
- •48. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
- •49. Спектры мощности случайных сигналов
- •50. Усиление шумов. Весовые функции.
- •51.Явление Гиббса. Параметры эффекта.
- •52. Последствия для практики. Нейтрализация явления Гиббса.
- •53. Основные весовые функции
- •54.Фильтрация случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала.
- •55. Взаимный спектр мощности входного и выходного сигналов.
- •56. Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
- •57. Рекурсивные частотные цифровые фильтры Чебышева.
- •58. Передаточная функция цифрового фильтра. Методика расчета фильтров.
- •21. Структурные схемы цифровых фильтров.
Восстановление утраченных или пропущенных данных.
Разностные операторы имеют одну особенность: оператор n+1 порядка аннулирует полином степени n, т.е. свертка оператора n+1 порядка с полиномом n-ой степени дает нулевые значения:
Эту особенность можно использовать для создания очень простых и достаточно надежных операторов восстановления в массивах пропущенных и утраченных значений или для замены аннулированных при обработке величин (например, явных выбросов).
Вид частотной характеристики для фильтров восстановления пропущенных данных 4-го и 6-го порядков:
Г
рафики
наглядно показывают, что применение
разностных интерполяционных фильтров
восстановления данных возможно только
для сигналов, высокочастотные и шумовые
составляющие которых минимум в три раза
меньше частоты Найквиста. Интерполяционные
фильтры выше 4-го порядка применять не
рекомендуется, т.к. они имеют коэффициент
усиления шумов более 1.
Аппроксимация производных. Частотные характеристики операторов
Аппроксимация производных - вторая большая область применения разностных операторов. Оценки первой, второй и третьей производной можно производить по простейшим формулам дифференцирования:
(sn)' = (sn+1-sn-1)/2t h1 = {-0.5, 0, 0.5}
(sn)'' = (sn+1-2sn+sn-1)/t h2 = {1, -2, 1}
(sn)''' = (-sn+2+2sn+1-2sn-1+sn-2)/2t h3 = {0.5, -1, 0, 1, -0.5}.
Оператор первой производной является нечетной функцией и имеет мнимый спектр. Если принять s(t) = exp(jt), то истинное значение первой производной должно быть равно: s'(t) = j exp(jt). Передаточная функция H() = j. Оценка первой производной в точке n = 0 по разностному оператору при t = 1: s'(0) = (exp(j)-exp(-j))/2 = j sin = H1(). Отношение расчетного значения к истинному на той же точке: K1() = sin()/.
В принципе, вторую производную можно получать и последовательным двойным дифференцированием данных оператором первой производной. Однако для таких простых операторов эти две операции не тождественны. Оператор последовательного двойного дифференцирования можно получить сверткой оператора первой производной с самим собой:
2h1 = h1* h1 = {0.25, 0, -0.5, 0, 0.25},
40.Нерекурсивные частотные цифровые фильтры.
Нерекурсивные фильтры. При нулевых значениях коэффициентов am уравнение (1.1.2) переходит в уравнение линейной дискретной свертки функции x(k) с оператором bn:
y(k) = bn x(k-n) (1.3.1)
Значения выходных отсчетов свертки (1.1.3) для любого аргумента k определяются текущим и "прошлыми" значениями входных отсчетов. Такой фильтр называется нерекурсивным цифровым фильтром (НЦФ). Интервал суммирования по n получил название "окна" фильтра. Окно фильтра составляет N+1 отсчет, фильтр является односторонним каузальным, т.е. причинно обусловленным текущими и "прошлыми" значениями входного сигнала, и выходной сигнал не опережает входного. Каузальный фильтр может быть реализован физически в реальном масштабе времени. При k<n, а также при k<m для фильтра (1.1.2), проведение фильтрации возможно только при задании начальных условий для точек x(-k), k = 1,2,..,N, и y(-k), k = 1,2,..,M. Как правило, в качестве начальных условий принимаются нулевые значения или значения отсчета х(0), т.е. продление отсчета x(0) назад по аргументу.