
- •1. Цифровые сигналы. Обработка цифровых сигналов.
- •2. Функциональные преобразования сигналов. Операции цифровой обработки.
- •3. Области применения цифровой обработки сигналов. Синтез цифровых рекурсивных фильтров методом частотного преобразования
- •4. Полосовой цифровой фильтр Баттерворта
- •5. Цифровые фильтры Чебышева.
- •Операции цифровой обработки сигналов. Линейная свертка. Корреляция сигналов. Линейная цифровая фильтрация. Модуляция сигналов.
- •Высокочастотный цифровые фильтры Баттерворта.
- •Передаточные функции фильтров
- •10. Цифровые фильтры обработки одномерных сигналов.
- •11. Нерекурсивные и рекурсивные цифровые фильтры.
- •12. Импульсная реакция фильтров. Передаточные функции фильтров.
- •14. Рекурсивные цифровые фильтры.
- •15. Конструкция рекурсивных цифровых фильтров.
- •16. Каскадная и параллельная форма
- •17. Режекторные и селекторные фильтры.
- •18. Цифровые фильтры
- •19. Частотные характеристики фильтров.
- •20. Фазовая и групповая задержка сигналов.
- •Билинейное z-преобразование при синтезе рекурсивных цифровых фильтров.
- •Деформация частотной шкалы.
- •Виды рекурсивных фильтров.
- •26 Фильтры сглаживания сигналов.
- •28. Фильтры мнк 1-го, 2-го и 4-го порядка.
- •32. Пространство z - полиномов. Аналитическая форма z-образов.
- •В общем случае, множества z, для которых полиномы s(z) сходится, образуют на z-плоскости.
- •33. Фильтры сглаживания сигналов методом наименьших квадратов.
- •34. Импульсные реакции и частотные характеристики фильтров. Модификации фильтров. Оптимизация сглаживания. Расчет простого цифрового фильтра по частотной характеристике.
- •Удобным методом решения разностных уравнений линейных систем является именно z-преобразование.
- •Разностные операторы.
- •Выделение в сигналах шумов
- •Восстановление утраченных или пропущенных данных.
- •Аппроксимация производных. Частотные характеристики операторов
- •40.Нерекурсивные частотные цифровые фильтры.
- •41.Типы фильтров. Методика расчетов. Идеальные частотные фильтры.
- •Конечные приближения идеальных фильтров. Применение весовых функций.
- •Гладкие частотные фильтры.
- •Частотные характеристики фильтров. Дифференцирующие цифровые фильтры. Методика расчетов
- •Идеальные фильтры. Конечные приближения идеальных фильтров.
- •47.Применение весовых функций.
- •48. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
- •49. Спектры мощности случайных сигналов
- •50. Усиление шумов. Весовые функции.
- •51.Явление Гиббса. Параметры эффекта.
- •52. Последствия для практики. Нейтрализация явления Гиббса.
- •53. Основные весовые функции
- •54.Фильтрация случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала.
- •55. Взаимный спектр мощности входного и выходного сигналов.
- •56. Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
- •57. Рекурсивные частотные цифровые фильтры Чебышева.
- •58. Передаточная функция цифрового фильтра. Методика расчета фильтров.
- •21. Структурные схемы цифровых фильтров.
1. Цифровые сигналы. Обработка цифровых сигналов.
Цифровые сигналы формируются из аналоговых операцией дискретизации – последовательным квантованием (измерением) амплитудных значений сигнала через определенные интервалы времени t или любой другой независимой переменной x. В результате равномерной дискретизации непрерывный по аргументу сигнал переводится в упорядоченную по независимой переменной последовательность чисел. В принципе разработаны методы ЦОС для неравномерной дискретизации данных, однако области их применения достаточно специфичны и ограничены. Условия, при которых возможно полное восстановление аналогового сигнала по его цифровому эквиваленту с сохранением всей исходно содержавшейся в сигнале информации, выражаются теоремами Найквиста, Котельникова, Шеннона, сущность которых практически одинакова. Для дискретизации аналогового сигнала с полным сохранением информации в его цифровом эквиваленте максимальные частоты в аналоговом сигнале должны быть не менее чем вдвое меньше, чем частота дискретизации, то есть fmax (1/2)fd, т.е. на одном периоде максимальной частоты должно быть минимум два отсчета.
Обработка цифровых сигналов Если входной сигнал x(t-t0) порождает однозначный выходной сигнал y(t-t0) при любом сдвиге t0, то систему называют инвариантной во времени. Ее свойства можно исследовать в любые произвольные моменты времени. Для описания линейной системы вводится специальный входной сигнал - единичный импульс (импульсная функция). В силу свойства суперпозиции и однородности любой входной сигнал можно представить в виде суммы таких импульсов, подаваемых в разные моменты времени и умноженных на соответствующие коэффициенты. Выходной сигнал системы в этом случае представляет собой сумму откликов на эти импульсы. Отклик на единичный импульс (импульс с единичной амплитудой) называют импульсной характеристикой системы h(n). Соответственно, отклик системы на произвольный входной сигнал s(k) можно выразить сверткой
g(k) = h(n) ③ s(k-n).
2. Функциональные преобразования сигналов. Операции цифровой обработки.
Функциональные преобразования сигналов. Одним из основных методов частотного анализа и обработки сигналов является преобразование Фурье. Различают понятия “преобразование Фурье” и “ряд Фурье”. Преобразование Фурье предполагает непрерывное распределение частот, ряд Фурье задается на дискретном наборе частот. Сигналы также могут быть заданы в наборе временных отсчетов или как непрерывная функция времени. При дискретизации и во временной, и в частотной области, обычно говорят о дискретном преобразовании Фурье (ДПФ):
S(n)
=
s(k)
exp(-j2
kn/N),где
N- количество отсчетов сигнала. Применяется
оно для вычисления спектров мощности,
оценивания передаточных функций и
импульсных откликов, быстрого вычисления
сверток при фильтрации, расчете
корреляции, расчете преобразований
Гильберта, и т.п. Для двух конечных
причинных последовательностей h(n) и
y(k) длиной соответственно N и K свертка
определяется выражением:
s(k)
= h(n)
③ y(k)
º
h(n)
*
y(k)
=
h(n)
y(k-n),
Корреляция существует в двух формах: автокорреляции и взаимной корреляции. Взаимно-корреляционная функция (ВКФ, cross-correlation function - CCF), и ее частный случай для центрированных сигналов функция взаимной ковариации (ФВК) – это показатель степени сходства формы и свойств двух сигналов. Для двух последовательностей x(k) и y(k) длиной К с нулевыми средними значениями оценка взаимной ковариации выполняется по формулам:
Kxy(n)
= (1/(K-n+1))
x(k) y(k+n), n = 0, 1, 2, … (1.2.2)
Kxy(n) = (1/(K-n+1)) x(k-n) y(k), n = 0, -1, -2, … (1.2.2')
Автокорреляционная функция представляет собой скалярное произведение сигнала и его копии в функциональной зависимости от переменной величины значения сдвига:
Bx(n)
= (1/(K-n+1))
x(k)
x(k+n), n = 0, 1, 2, …
Линейная цифровая фильтрация является одной из операций ЦОС, имеющих первостепенное значение, и определяется как
s
(k)
=
h(n)
y(k-n),
где: h(n),
n=0,
1, 2, … , N
– коэффициенты фильтра, y(k)
и s(k) – вход и выход фильтра. Это по сути
свертка сигнала с импульсной характеристикой
фильтра.
На рис.
1.2.6 показана блок-схема фильтра, который
в таком виде широко известен, как
трансверсальный (z – задержка на один
интервал дискретизации).
Самым
распространенным преобразованием
является дискретное преобразование
Фурье. При K
отсчетов
функции:
S(n)
=
s(k)
exp(-j
2
kn/K).