Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_OTK_SPr 1(переведено)1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.83 Mб
Скачать

2.5.5 Група однакових і рівностоячих імпульсів (пачка імпульсів)

На самостійне опрацювання. Гоноровський ст.41-54.

Лекція№3. Подання сигналів з ​​обмеженою смугою частот у вигляді ряду Котельникова

У теорії і техніці сигналів широко використовується теорема Котельникова (теорема відліків): якщо найвища частота в спектрі функції менше, ніж , то функція повністю визначається послідовністю значень у момент часу, віддалені один від одного не більше ніж на секунд.

Відповідно до цієї теоремою сигнал обмежений по спектру найвищої частотою , можна уявити рядом

(3.1)

У цьому виразі позначає інтервал між двома відліковими точками на осі часу, а - вибірка функції в момент часу .

Вивчення функцій рядів ілюструє мал.3.10:

мал.3.1

функція виду

(3.2)

має такі властивості:

  1. в точці , а в точках , де - будь-яке ціле позитивне чи негативне число, відмінне від

  2. спектральна щільність функції рівномірна в смузі частот і дорівнює .

Так як функція відрізняється від тільки зрушенням на осі часу на , то спектральна щільність функції

(3.3)

Ряд (3.1) точно визначає заданий сигнал в точках відліку, оскільки коефіцієнти ряду є самі вибірки з функції, тобто величини .

Розглянемо випадок коли тривалість сигналу конечна і дорівнює , а смуга частот дорівнює . При цьому випадку і певних припущеннях загальне число незалежних параметрів (тобто значень ), яка необхідна для повного завдання сигналу, очевидно буде

При цьому виразі (3.1) приймає вигляд (при відліку часу від першої вибірки):

(3.4)

Число іноді називають числом степенів свободи сигналу , а іноді і базою сигналу.

Енергію і середню потужність сигналу неважко виразити через задану послідовність тимчасових вибірок.

Середня за час потужність безперервного сигналу дорівнює середньому квадрату вибірки, число яких дорівнює .

3.1 Дискретизовані сигнали

Дискретні сигнали виникають у тих випадках, коли джерело повідомлень видає інформацію у фіксовані моменти часу.

Дискретний сигнал: його значення визначені лише в рахунковому множині точок. Дискретний сигнал являє собою послідовність відлікових значень сигналу в точках відповідно.

3.1.1 Дискретизована послідовність

На практиці, відліки дискретних сигналів беруть у часі через рівний проміжок , званий інтервалом (кроком) дискретизації:

Операцію дискретизації, можна описати, вводячи в розгляд узагальнену функцію

звану дискретизованою послідовністю.

Дискретний сигнал являє собою функціонал, визначений на множині всіляких аналогових сигналів і рівний скалярному твору функцій і :

(3.5)

Формула (3.5) вказує шлях практичної реалізації пристрою для дискретного сигналу. Робота дискретизатора заснована на операції стробування - перемноження сигналу і гребінчатої ​​функції (мал.3.2)

мал.3.2

3.1.2 Спектральна щільність дискретних сигналів

Дискретний сигнал з точністю до коефіцієнта пропорційності дорівнює добутку функції і дискретизуючій послідовності :

(3.6)

Відомо, що спектр твори двох сигналів пропорційний згортку їх спектральних густин. Тому якщо відомі закони відповідності сигналів і спектрів:

то спектральна щільність дискретизованого сигналу

(3.7)

Щоб знайти спектральну щільність дискретизуючої послідовності, розкладемо періодичну функцію в комплексний ряд Фур'є:

Коефіцієнти цього ряду

Виходячи з фільтруючих властивостей дельта функції отримуємо

(3.8)

тобто спектр дискретизуючої послідовності складається з нескінченної сукупності дельта-імпульсів у приватній області. Дана спектральна щільність є періодичною функцією з періодом

Підставимо формулу (3.8) в (3.7) і змінивши порядок проходження операцій інтегрування і підсумовування, знаходимо

(3.9)

Спектр сигналу, отриманого в результаті дискретизації нескінченно короткими стробубчими імпульсами, являє собою суму нескінченного числа "копій" спектру вихідного аналогового сигналу. Копії розташовуються на осі частот через однакові інтервали , рівні значенням кутової частоти першої гармоніки дискретизуючої імпульсної послідовності.

мал.3.3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]