Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛК3.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.13 Mб
Скачать

Проведение экспериментов. Для отработки экспериментов, представленных в данном руководстве, Вам потребуются электронные компоненты для конструирования схем, определенная методика соединения компонентов между собой, а также контрольные электронные приборы для осуществления, Ваших измерений. Ниже приводится краткое описание всего необходимого для экспериментов.

Компоненты. Резисторы, конденсаторы, катушки индуктивности и другие детали, требуемые для экспериментов, доступны для Вас в учебной лаборатории. Список деталей и аппаратуры, которые Вам потребуются, представлен в разделе «Необходимые принадлежности» каждого приведенного эксперимента. Указанный список подкрепляется принципиальными схемами экспериментальных цепей, конкретно отражающими потребность в деталях.

Система макетирования. Вам потребуется некоторый способ, чтобы выполнять соединения компонентов между собой. Это обычно осуществляется при помощи системы макетирования. Эта часть оборудования часто называется также тренером или макетирующим устройством. Основной отличительной чертой системы является макетная панель, которая представляет собой набор металлических соединительных элементов в корпусе из пластика и обеспечивает быстрый, легкий и удобный способ соединения электронных деталей и проводов без всякой пайки. Контактные выводы компонентов вставляются в не требующие пайки соединительные элементы. Ваш инструктор даст Вам пояснения по поводу макетной системы, используемой Вашей школой.

Контрольное оборудование. Для выполнения экспериментов Вам потребуется также определенное контрольное оборудование. Основными элементами такого оборудования являются:

* Цифровой мультиметр (универсальный измерительный прибор)

* Осциллограф

* Генератор функции

* Источник питания

Упомянутые устройства описываются ниже.

Цифровой мультиметр. Цифровой мультиметр является прибором, используемым для измерения напряжений, сопротивлений и токов. Мультиметр подключается к схеме при помощи двух испытательных выводов и выводит измеренное значение на семисегментное цифровое устройство индикации — жидкокристаллическое или на светоизлучающих диодах. Может использоваться и аналоговый мультиметр, который называется также вольтомметром, имеющий шкалу с указателем, хотя точность показании такого прибора хуже, чем у цифрового мультиметра.

Осциллограф. В осциллографе используется электронно-лучевая трубка для визуализации сигналов переменного тока. Предпочтительным является осциллограф с двумя входными каналами, позволяющий отображать одновременно два сигнала. Осциллограф дает возможность измерять напряжение, период, частоту и фазовый сдвиг.

Генератор функций. Генератор функций называется также генератором сигналов или генератором гармонических сигналов/звуковым генератором. Он генерирует напряжение синусоидальной формы переменной амплитуды и частоты. Он служит в качестве источника сигналов переменного напряжения для всех экспериментов с переменным током. Генератор функций формирует также сигналы прямоугольной и треугольной формы.

Источник питания. Источник питания может формировать изменяемое постоянное напряжение для питания схем в экспериментах. Большинство лабораторных источников питания позволяют осуществлять плавную регулировку выходного постоянного напряжения от 0 до 15—30 вольт. Многие источники питания содержат также встроенные вольтметры. Предпочтительны источники питания с двумя выходами, поскольку в некоторых экспериментах требуются источники двух независимо регулируемых постоянных напряжений для питания схем.

ЭКСПЕРИМЕНТ 1 Ознакомление с мультиметром

Цели: После проведения данного эксперимента Вы сможете измерять напряжение, ток и сопротивление, используя цифровой мультиметр.

Необходимые принадлежности

* Цифровой мультиметр

* Источник постоянного напряжения

* Одна батарея на 9 вольт

* Один элемент (для карманного фонарика) типоразмера АА, С или D

* Резисторы — 1/2 Вт: один резистор 1 кОм

ВВОДНАЯ ЧАСТЬ

В своей деятельности в качестве техника Вам придется использовать множество контрольных приборов различного типа для тестирования, измерения и обнаружения неисправностей в электронном оборудовании. Мультиметр — это прибор, который будет чаще всего использоваться Вами. Этот прибор предназначен для измерения трех следующих наиболее важных характеристик в любой электронной схеме: напряжение, ток и сопротивление. Большинство мультиметров могут измерять как постоянное, так и переменное (синусоидальное) напряжение, постоянный и переменный ток, а также сопротивление постоянному току. Два испытательных вывода от мультиметра подключаются к схеме или ее элементу для выполнения этих измерении. Мультиметр является универсальным прибором, который Вы будете использовать практически каждый день в вашей работе. Вы будете использовать мультиметр во всех экспериментах с постоянным током в соответствии с данным руководством по лабораторной практике. Имеется два основных типа мультиметров для общего использования: аналоговый и цифровой.

Аналоговые мультиметры

В аналоговом мультиметре применяется стандартная измерительная шкала с указателем. Значение напряжения, тока или сопротивления отсчитываются от позиции указателя на измерительной шкале. Определение показаний аналогового мультиметра очень похоже на определение времени по стрелкам на часах. В случае часов Вам приходится интерполировать число секунд между маркировками минут. Точно так же при работе с аналоговым мультиметром Вы должны определять или оценивать фактическое значение путем интерполирования между маркировками напряжений, токов или сопротивлений на измерительной шкале.

Аналоговые мультиметры все еще широко используются, поскольку они недороги и надежны в работе. Их основным недостатком является то, что они имеют меньшую точность и больший разброс при измерениях. В большинстве случаев погрешность аналогового мультиметра составляет менее 2% от пределов измерения по шкале прибора, что вполне приемлемо в большинстве практических применении. Тем не менее, во многих случаях желательны более точные измерения.

Цифровые мультиметры

Цифровой мультиметр подобен аналоговому мультиметру в том отношении, что он также является универсальным измерительным прибором, способным измерять напряжение, ток и сопротивление. Основным отличием является то, что результаты измерений выводятся на устройство десятичной цифровой индикации. В большинстве цифровых мультиметров имеется жидкокристаллический индикатор (дисплей), который похож на дисплей, используемый в цифровых электронных часах. Значение тока, напряжения или сопротивления выводится в виде десятичных цифр на семисегментные индикаторы. Индикация в более старых цифровых мультиметрах осуществляется с использованием индикаторов на светоизлучаюших диодах. В некоторых стендовых больших мультиметрах все еще используются светодиодные индикаторы.

В дополнение к удобствам, связанным с использованием десятичных дисплеев, цифровые мультиметры обеспечивают также более высокую точность измерений. Хороший цифровой мультиметр обеспечивает точность измерений от 0, 5% до 1% от фактического значения. Такие точные измерения предпочтительны при тестировании электронных схем, поскольку они дают наилучшую информацию о состояниях схем. Цифровые мультиметры имеют также более высокую разрешающую способность измерительной системы, что обеспечивает более высокоточные измерения с большим числом десятичных разрядов.

Краткое содержание

Мультиметр является измерительным прибором, который при надлежащем его использовании расскажет Вам о состоянии электронной схемы. В данном эксперименте Вы научитесь пользоваться одним из мультиметров Вы научитесь измерять постоянное напряжение, постоянный ток и сопротивление.

ПРОЦЕДУРА

1. Ознакомьтесь с мультиметром. Он должен быть аналоговым или цифровым устройством, в зависимости от того, какой тип имеется в вашей лаборатории. Остановимся на цифровом мультиметре. Исследуйте дисплеи и органы управления. Укажите конкретные особенности мультиметра в предусмотренных полях (см. ниже):

а) тип дисплея ____________________

б) выбор функции измерения (напряжение, ток, сопротивление):

при помощи кнопочных переключателей___ при помощи ползункового переключателя___ при помощи поворотного переключателя ___

в) выбор диапазона измерения:

при помощи кнопочных переключателей ___ при помощи ползункового переключателя___ при помощи поворотного переключателя ___

г) выбор типа измерения (по постоянному току или переменному току):

при помощи кнопочного переключателя ___ при помощи ползункового переключателя __ при помощи поворотного переключателя ___

2. Теперь посмотрите на испытательные выводы мультиметра. Черный вывод называется общим выводом или выводом массы. Красный вывод называется потенциальным выводом. Черный вывод вставляется в гнездо СОМ на передней панели мультиметра. Красный вывод вставляется в отверстие с маркировочными символами оммы и вольты (ft и V). Другое (другие) гнездо (гнезда) на передней панели мультиметра используется (используются) при измерении тока. Черный вывод всегда остается в гнезде СОМ, однако, красный вывод вставляется или в отверстие А, или в отверстие 10А при выполнении измерений тока соответственно до одного ампера или до 10 ампер. Сейчас вставьте красный вывод в гнездо ft/V.

3. Перед тем, как подключать испытательные выводы, в частности, когда измеряемое напряжение или ток неизвестны, желательно устанавливать мультиметр на максимально возможный предел измерений. Это позволяет предотвратить выход мультиметра из строя. Если показание при этом слишком мало, Вы можете шаг за шагом выполнять переключение на более низкие пределы измерений, чтобы получить наиболее оптимальное показание прибора. Когда же диапазон измерения измеряемой величины известен, то для получения наиболее точных значений измерения всегда выбирайте такой предел измерений, который несколько выше измеряемой величины. Например, если Вы желаете измерить напряжение 15 В, установите переключатель на предел измерений 20 В, а не на предел измерений 200 В.

Большинство мультиметров имеют следующие пределы измерений:

» напряжения: 200 мкВ, 2 мВ, 20 м В, 200 м В,

2В, 20В, 200В, 1000В » токи: 200 мкА, 2 мА, 20 мА, 200 мА, 1 А » сопротивления: 2000м, 2 кОм, 20к0м,

200 кОм, 2МОм

Если Ваш мультиметр имеет отличающиеся пределы измерений, запишите их все в только что приведенном формате.

Используя приведенные пределы измерений, укажите оптимальный предел измерения для измерения каждого из следующих электрических сигналов:

а) 120 В = выбрать предел измерения ______

б) 3 мА = выбрать предел измерения ______

в) 470 кОм = выбрать предел измерения ____

4. Чтобы научиться использовать мультиметр, Вы сейчас измерите постоянные напряжения батарей. Мультиметр, установленный для измерения напряжений, называется вольтметром. Включите мультиметр. Установите переключатель пределов измерения и переключатель функций для измерения напряжения батареи 9 В. После этого прикоснитесь пробниками к выводам батареи 9 В. Коснитесь красным выводом к положительному контакту (+) батареи, а черным выводом — к отрицательному контакту (—) батареи. Сосчитайте измеренное напряжение на дисплее прибора и запишите его в предусмотренное ниже поле.

Напряжение батареи = _______ В

5. Поменяйте между собой пробники на контактах батареи 9 В.

Коснитесь черным выводом к положительному контакту (+) батареи, а красным выводом — к отрицательному контакту (—) батареи. Сосчитайте измеренное напряжение на дисплее прибора и запишите его в предусмотренное ниже поле.

Напряжение батареи (при обращении

пробников) = _______ В

Объясните различие между двумя показаниями.

6. Теперь измерьте напряжение стандартного элемента для карманного фонаря. Вы можете использовать элемент большего размера D, меньшего размера С или миниатюрный элемент АА. Прежде чем измерять напряжение элемента, точно определите положительный и отрицательный контакты элемента. После этого измерьте напряжение, подключая пробники прибора к соответствующим контактам элемента. Используйте позицию 20 В на переключателе мультиметра. Поменяйте теперь местами пробники на контактах элемента и снова измерьте напряжение. Запишите оба показания в предусмотренных ниже полях.

Напряжение элемента = _______ В

Напряжение элемента (при обращении пробников) == _______ В

Снова объясните любые отличия, замеченные при измерениях.

7. Установите переключатель мультиметра в позицию 2 В и снова повторите измерение напряжения элемента для карманного фонаря. Запишите полученное значение напряжения. Напряжение элемента = _____ В

Объясните разницу между показаниями, полученными при измерении в диапазонах измерения 2В и 20 В.

8. Далее измерьте напряжение лабораторного источника питания. Большинство таких источников питания имеет изменяемое выходное напряжение.

Включите источник питания и подключите испытательные выводы мультиметра к выходам источника питания. Если источник питания имеет свой собственный встроенный измерительный прибор, установите выходное напряжение 30 В. Если источник питания не может формировать такое большое напряжение, установите его выходное напряжение 14 В. Если источник питания не имеет встроенного измерительного прибора, используйте Ваш мультиметр для измерения выходного напряжения. Установите мультиметр на продел измерения 200 В и измерьте выходное напряжение 30 В. Если на выходе только 14В, используйте 20-вольтовый диапазон измерений мультиметра для измерения этого напряжения. Теперь выполните переключение на следующий более низкий предел измерения (20 В в случае выходного напряжения З0В или 2 В в случае выходного напряжения 14 В). Опишите, что показывает дисплей мультиметра.

9. Теперь Вы будете использовать мультиметр для измерения сопротивлений. В данном режиме мультиметр называется омметром. Установите переключатель мультиметра в положение 2 кОм. Затем дотроньтесь пробниками до двух выводов резистора с номиналом 1 кОм (с цветовым кодом коричневый-черный-красный-золотой). Запишите показание в предусмотренное ниже поле. Значение сопротивления = _______Ом

10. Поменяйте пробники местами и снова измерьте сопротивление. Какое различие Вы заметили, если вообще заметили таковое? 11. Заметьте эффект разомкнутой или замкнутой цепи. При установке мультиметра в режим омметра он может использоваться для измерения так называемой целостности цепи. Другими словами, омметр может обнаруживать разомкнутый контур (бесконечное сопротивление) и замкнутый контур или короткое замыкание (нулевое сопротивление).

При использовании мультиметра, установленного на предел измерения 2 кОм, коснитесь измерительными выводами друг друга. Это состояние представляет собой короткое замыкание. Какое сопротивление Вы измерили при этом?

Сопротивление при коротком

замыкании =_________Ом

Теперь оставьте измерительные выводы открытыми, не касающимися друг друга или чего-нибудь иного. Это соответствует незамкнутому контуру. Что Вы при этом считываете на дисплее мультиметра? Какому сопротивлению это соответствует?

Показание мультиметра =_________

Сопротивление разомкну той цепи =__ Ом 12. Теперь Вы переходите к измерению тока. Мультиметр, используемый таким образом, превращается в амперметр. Для измерения Вам потребуется вставить красный пробник в гнездо с маркировкой А на передней панели Вашего мультиметра. Черным вывод остается соединенным с гнездом СОМ. Установите переключатель мультиметра на предел измерения 20 мА.

Для измерения тока Вы должны построить простую электрическую схему, через которую должен протекать ток. Вы сделаете это при использовании батареи 9 вольт и резистора 1 кОм. Цепь, которую Вы должны собрать, в схематическом виде представлена на рисунке 1-1. Через эту цепь будет протекать ток величиной в один миллиампер (1 мА) или 0, 001 ампера.

Рис. 1-1. Мультиметр, включенный в цепь в качестве амперметра.

Чтобы собрать цепь, соедините один вывод резистора к отрицательному контакту батареи 9 вольт. После этого коснитесь красным выводом мультиметра к положительному контакту батареи, а черным выводом к свободному выводу резистора 1 кОм. Снимите показание тока на дисплее и запишите это значение. Ток в цепи = _________ мА

Как это согласуется с Вашим расчетным значением? Объясните различия, если таковые имеются.

13. Поменяйте теперь местами пробники мультиметра и повторите шаг 12. Чем отличается новое показание? Объясните.

ОБЗОРНЫЕ ВОПРОСЫ

1. Какой диапазон мультиметра Вы бы использовали для измерения 2, 7 В?

а) 200 мВ,

б) 2 В,

в) 20 В,

г) 200 В.

2. Какое главное преимущество в использовании наименьшего возможного диапазона для измерения электрических величин?

а) предотвращение повреждения мультиметра,

б) более высокая точность представления,

в) более высокая скорость измерения,

г) более высокая точность измерения.

3. Если в показании мультиметра имеется 1 в самой левой позиции (старший значащий разряд) на дисплее, это означает, что Вы:

а) измеряете разомкнутую цепь или бесконечное сопротивление,

б) установили слишком низкий предел измерения для измеряемой величины,

в) имеете случай а и б,

г) имеете случай, отличный и от а и от б.

4. Если при измерении напряжения на дисплее появляется отрицательный знак, это означает, что красный измерительный вывод по отношению к черному пробнику (СОМ) имеет следующую полярность:

а) отрицательную,

б) положительную.

5. Справедливо ли высказывание: Должна соблюдаться правильная полярность измерительных выводов при измерении сопротивления?

а) да,

б) нет.

ЭКСПЕРИМЕНТ 2 Цветовой код резисторов

Цели: После проведения данного эксперимента Вы сможете понимать цветовой код резисторов, рассчитывать допуски резисторов и измерять сопротивления при помощи омметра.

Необходимые принадлежности

* Цифровой мультиметр

* Резисторы

ВВОДНАЯ ЧАСТЬ

По-видимому, наиболее распространенным электронным компонентом является резистор. Резисторы оказывают определенное противодействие протеканию тока в электронных схемах. Величина этого сопротивления выражается в омах (Ом). Один Ом определяется как величина сопротивления протеканию тока силой в один ампер, когда приложено напряжение величиной один вольт. В электронных схемах резисторы могут иметь величины от доли Ома до нескольких миллионов Ом. Большие значения сопротивления обычно выражаются в килоомах и в мегомах. Килоом — это тысяча Ом. Эта единица измерения обозначается буквой к (кОм). Резистор 10 к имеет величину сопротивления 10х1000 = 100000м. Мегом — это миллион Ом. Данная единица измерения обозначается буквой М (МОм). Следовательно, резистор 2, 2 М имеет величину сопротивления 22000000м.

Резисторы имеют стандартные величины сопротивлений. Значение сопротивления обозначается цветными полосками на корпусе резистора. Вы должны будете только посмотреть на резистор и сразу по его цветовому коду определить фактическую величину его сопротивления.

Цветовой код резисторов

Цветовой код резисторов легко изучается и используется на практике. Как только Вы запомните его, Вы быстро и легко сможете определять величины сопротивлений резисторов. Целью настоящего эксперимента является ознакомление с цветовым кодом резисторов и приобретение опыта в определении величин соответствующих сопротивлений.

Цветовой код представлен на рисунке 2-1. Первые две цветные полоски на резисторе обозначают цифровые значения. Третья цветная полоска обозначает множитель. Множитель указывает на то, сколько нулей следует добавить после двух цифровых разрядов, чтобы получить окончательную величину сопротивления в омах. Четвертая цветная полоска имеет или серебряный, или золотой цвет, располагается справа и обозначает допуск резистора. Большинство резисторов, которые используются в электронике, имеют допуск или 5%, или 10%, и это означает, что фактическая величина сопротивления может отклоняться от номинального значения, указанного цветовым кодом, на 5% или 10%.

Рис. 2-1. Цветовой код резисторов

Красный -фиолетовый -оранжевый –серебряны

Рис. 2-2. Пример цветового кода

Величины сопротивлений

Обратитесь к рисунку 2-2. Чтобы определить величину сопротивления, запишите сначала цифры, соответствующие первым двум полоскам. В нашем случае это цифры 2 и 7. Далее запишите количество нулей, указываемое третьей цветной полоской. В данном случае цвет оранжевый, который означает три нуля. Вы теперь определили фактическую величину сопротивления резистора, а именно 270000м. В обычном представлении это записывалось бы как 27 кОм, где к заменяет три нуля.

Наконец, серебряная полоска обозначает допуск 10%. Это означает, что фактическая величина сопротивления резистора может отклоняться от номинального значения, указанного цветовым кодом, на 10%. Десять процентов от 27000 ом составляет:

27000х0, 10=2700 Ом

Следовательно, величина сопротивления варьирует в диапазоне:

27000 - 2700 = 24300 Ом 27000+ 2700=29700 Ом

Таким образом, фактическое значение сопротивления будет находиться в пределах от 24300 до 29700 Ом. Вы можете проверить это, измерив сопротивление резистора при помощи мультиметра.

Резисторы обладают также номинальной мощностью. Эта величина означает, сколько тепла могут безопасно рассеивать резисторы. Резисторы с цветовой кодировкой выпускаются со стандартными номинальными мощностями 1/8, 1/4, 1/2,

1 и 2 ватта (большая часть резисторов имеет номинальную мощность 1/4 ватта). Чем больше резистор, тем больше его способность рассеивать мощность.

Краткое содержание

В данном эксперименте при использовании рисунка 2-3 Вы будете брать резисторы, которые Вам предоставит Ваш инструктор, и определять их сопротивления и допуски. Вы будете также измерять их значения при помощи Вашего мультиметра. Это обеспечит Вас достаточным начальным опытом в определении сопротивления любого резистора, предоставляемого в данной программе.

Рис. 2-3. Таблица для записи значений сопротивления резисторов

ПРОЦЕДУРА

1. Записывайте цветовой код каждого резистора, предоставляемого Вам Вашим инструктором, в левую колонку на рисунке 2-3. Не имеет значения, в каком порядке Вы будете составлять список резисторов. Обеспечивайте, тем не менее, при считывании цветового кода правильное расположение резистора, чтобы Вы правильно считывали этот код — слева направо. Чтобы правильно расположить резистор для считывания цветового кода, необходимо, чтобы золотая или серебряная полоска допуска всегда располагалась справа. Запишите все цветовые коды резисторов в таблицу на рисунке 2-3, прежде чем переходить к следующему шагу. В первом ряду на рисунке 2-3 показан формат записи с использованием примера, приведенного в вводной части данной главы.

2. Преобразуйте цветовой код в соответствующую величину сопротивления. Записывайте значения сопротивлений во вторую колонку на рисунке 2-3. Запишите все значения сопротивлений резисторов, прежде чем переходить к следующему шагу. Допуски следует записать в третью колонку.

3. Используя значения допуска, которые Вы записали в третью колонку, выполните теперь расчет диапазона отклонения от номинала для каждого резистора. То есть, определите верхние и нижние значения диапазонов сопротивлений для всех резисторов по их допуску. Запишите ваши данные в колонку 4 на рисунке 2-3.

4. Далее, используя Ваш цифровой мультиметр, измерьте значение сопротивления каждого резистора. Используйте при этом такой предел измерения для каждого резистора, который обеспечит максимальную точность значения и точность его представления. Каждое измеряемое значение для резисторов записывайте в колонку 5 на рисунке 2-3.

5. Теперь сравните фактически измеренную величину с указанным номинальным сопротивлением резистора и диапазоном допуска. Убедитесь, что измеренное значение находится внутри диапазона допуска. Если какое-либо из измеренных значений находится вне предела допуска, поставьте контрольную отметку рядом с такими резисторами.

ОБЗОРНЫЕ ВОПРОСЫ

1. Краткий способ выразить величину сопротивления 15000000 Ом следующий:

а) 15 кОм,

б) 1. 5 МОм,

в) 1500 кОм,

г) 15 МОм.

2. Резистор с цветовым кодом синий-серый-желтый-серебряный имеет величину:

а) 86 кОм, 5%,

б) 680 кОм, 10%,

в) 860 кОм, 5%,

г) 6, 8 МОм, 10%.

3. Каков диапазон сопротивления резистора с номиналом 2, 2 кОм, 5%?

а) 2090 — 2310 Ом,

б) 1980 — 2420 Ом,

и) 2090 — 2200 Ом,

г) 2200— 2310 Ом.

4. Каким цветом представляется на резисторах множитель 10000000?

а) зеленым,

б) синим,

в) фиолетовым,

г) серым.

5. Размер резистора отражает обычно его:

а) омическое значение,

б) допуск,

в) диапазон сопротивлений,

г) номинальную мощность.

Раздел 4.

Андpианов В.И. Боpодин В.А. Соколов А.В.Спpавочное пособие.-Лань,СПБ.,1996

Введение

Описаны способы защиты от утечки конфиденциальной информации, средства используемые для этого, методы выявления каналов утечки информации. Ответ на эти и другие вопросы по защите информации вы получите в данной главе, которая имеет четыре раздела.

В первом разделе даны описания, принципы работы и настройка детекторов радиоизлучений, с помощью которых можно обнаруживать активизированные каналы утечки информации.

Второй раздел посвящен защите телефонных линий связи и непосредственно телефонных аппаратов. Телефон - неотъемлемая часть нашей жизни, по телефонным каналам идут потоки разнообразной информации, и именно поэтому важно защищать их от использования вам во вред.

Третий раздел посвящен специальным защитным устройствам, снижающим эффективность систем получения информации по оптическим каналам.

Четвертый раздел посвящен описанию устройств , также имеющих отношение к защите информации. Это сетевые фильтры для защиты от наводок и генераторы акустического шума для контроля акустических свойств помещений.

Для разработки и осуществления мероприятий по защите вашей интеллектуальной собственности от утечки информации по техническим каналам лучше всего воспользоваться услугами квалифицированных специалистов, хорошо подготовленных в рамках данного вопроса.

Глава 3. Технические средства защиты информации

3.1. Детекторы радиоизлучений

Простейший детектор радиоволн

Даже если вам нечего опасаться, но вы хотели бы выяснить, не шпионит ли кто-нибудь за вами с помощью подслушивающей радиоаппаратуры, соберите схему, показанную на рис. 3.1.

Устройство представляет собой простейший детектор радиоволн со звуковой индикацией. С его помощью можно отыскать в помещении работающий микропередатчик. Детектор радиоволн чувствителен к частотам вплоть до 500 МГц. Настраивать детектор при поиске работающих передатчиков можно путем изменения длины телескопической приемной антенны.

Телескопическая приемная антенна воспринимает высокочастотные электромагнитные колебания в диапазоне до 500 МГц, которые затем детектируются диодом VD1 типа Д9Б. Высокочастотная составляющая сигнала отфильтровывается дросселем L1 и конденсатором С1. Низкочастотный сигнал поступает через резистор R1 на базу транзистора VT1 типа КТ315, что приводит к открыванию последнего и, как следствие, к открыванию транзистора VT2 типа КТ361. При этом на резисторе R4 появляется положительное напряжение, близкое к напряжению питания, которое воспринимается логическим элементом DD1.1 микросхемы DD1 типа К561ЛА7 как уровень логической единицы. При этом включается генератор импульсов на элементах DD1.1, DD1.2, R5 и С3. С его выхода импульсы с частотой 2 кГц поступают на вход буферного каскада на элементах DD1.3, DD1.4. Нагрузкой этого каскада служит звуковой пьезокерамический преобразователь ZQ1 типа ЗП-1, который преобразует электрические колебания частотой 2 кГц в акустические. С целью увеличения громкости звучания преобразователь ZQ1 включен между входом и выходом элемента DD1.4 микросхемы DD1. Питается детектор от источника тока напряжением 9 В через параметрический стабилизатор на элементах VD2, R6.

В детекторе используются резисторы типа МЛТ-0,125. Диод VD1 можно заменить на ГД507 или любой германиевый высокочастотный. Транзисторы VT1 и VT2 могут быть заменены на КТ3102 и КТ3107 соответственно. Стабилитрон VD2 может быть любым с напряжением стабилизации 4,7-7,0 В. Пьезокерамический преобразователь ZQ1 можно заменить на ЗП-22.

Настраивать детектор лучше всего с использованием высокочастотного генератора. Подключите к выходу генератора изолированный провод - антенну, и параллельно ему расположите антенну детектора. Таким образом вы слабо свяжете детектор с генератором. Исследуйте весь радиодиапазон, начиная с частоты 500 кГц и до точки, где детектор перестанет воспринимать радиоволны. Заметьте, как с изменением частоты изменяется чувствительность детектора.

Детектор поля со звуковой сигнализацией и регулировкой чувствительности

От предыдущего данное устройство отличается более высокой чупствительностью н возможностью регулировки чувствительности. Это устройство одновременно и сложнее вышеописанного. Принципнальная схема детектора приведена на рис. 3.2.

Сигнал, принимаемый антенной, усиливается широкополосным трехкаскадным апериодическим усилителем высокой частоты на транзисторах VT1-VT3 типа КТ3101. Усиленный сигнал с нагрузки транзистора VT3, резистора R10, через конденсатор С9 поступает на детектор, собранный по схеме удвоения напряжения на диодах VD1, VD2. Положительное напряжение с регулятора чувствительности резистора R11 поступает на диоды VD1 и VD2 типа Д9Б. Протекание небольшого начального тока через эти диоды приводит к увеличению чувствительности детектора. Одновременно это напряжение поступает на базу транзистора VT4 типа КТ315 через диод VD3 типа Д9Б и резистор R14. Базовый ток приводит к открыванию транзистора VT4. На его коллекторе устанавливается потенциал логической единицы. При увеличении уровня сигнала на входе устройства постоянное напряжение на конденсаторе С10 уменьшается. Это ведет к закрыванию транзистора VT4. Уровень логической единицы, появляющийся на коллекторе транзистора VT4, разрешает работу генератора прямоугольных импульсов на элементах DD1.1, DD1.2, R17 и C11. Положительные импульсы частотой около 2 Гц разрешают работу генератора прямоугольных импульсов на элементах DD1.3, DD1.4, R18 и С12. С выхода этого генератора прямоугольные импульсы с частотой следования 1,5-2 кГц, промодулированные частотой 2 Гц, поступают на пьзокерамичсский преобразователь ZQ1 типа ЗП-1. Питание устройства ocуществляется от параметрического стабилизатора на стабилитроне VD4 типа КС156 и резисторе R16.

В устройстве использованы резисторы типа МЛТ-0,125. Транзисторы VT1-VT3 можно заменить на КТ3120, КТ3124 или КТ368. В последнем случае уменьшается диапазон регистрируемых сигналов. Диоды VD1-VD3 могут быть любые германиевые высокочастотные. Стабилитрон VD4 может быть любым с напряжением стабилизации 5,6-7,0 В.

Настройку детектора производят по вышеприведенной методике. Верхний предел частоты регистрируемых сигналов у этого детектора может достигать 900-1000 МГц. Регулировка прибора заключается в установлении такого уровня чувствительности детектора резистором R11, при котором компенсируется фоновый уровень радиоизлучения в данном помещении. При этом звуковой сигнализатор не должен работать. При приближении детектора к источнику излучения (микропередатчику) уровень напряженности поля начинает превышать фоновый и звуковая сигнализация срабатывает.

Постой малогабаритный детектор поля с индикацией на двух светодиодах.

От описанных выше конструкций данная отличается малыми габаритами, малым количеством используемых деталой и, вместе с тем, достаточно высокой чувствительностью. В этом детекторе поля использовано новое схемное решение. Хорошо известно, что измерение ВЧ напряжений, меньших 0,5 В, затруднено тем, что уже при переменном напряжении менее 0,2-0,3 В все полупроводниковые диоды становятся неэффективными. Существует, однако, способ измерения малыхпеременных напряжений с использованием сбалансированного диодно-резистивного моста, позволяющий измерять напряжение менее 20 мВ при равномерной АХЧ до 900 МГц. Принципиальная схема устройства, использующего данный способ, приведена на рис. 3.3.

Основу данного устройства составляет микросхема DА1 типа КР1112ПП2. Эта микросхема включает в себя устройство, определения баланса электрического моста с индикацией. Микросхема имеет встроенный источник опорного напряжения.

Сигнал, наводимый в антенне, усиливается широкополосным апериодическим усилителем высокой частоты на транзисторе VT1 типа KT3101. Усиленное переменное напряжение высокой частоты через конденсатор СЗ поступает в диодно-резистивный мост на диодах VD1- VD4 типа ГД507 и резисторах R3-R5. От источника опорного напряжения (вывод 3 микросхемы DA1) через резисторы R3-R5 и диоды VD1-VD4 протекает небольшой (примерно несколько микроампер) прямой ток, который улучшает условия детектирования и увеличивает чувствительность детектора. В выпрямлении измеряемого переменного напряжения участвуют только диоды VD1 и VD2, а два других - VD3, VD4 - образуют соседнее плечо моста, на котором создается начальное напряжение, балансирующее мост, и одновременно служат для его термокомпенсации. Все диоды подобраны с возможно более близкими вольт-амперными характеристиками. Конденсатор С4 отфильтровывает переменную составляющую выпрямленного напряжения. Резистор R4 служит для точной балансировки моста. При хорошей балансировке устройство будет реагировать только на напряжение, являющееся результатом выпрямления измеряемого сигнала. Выпрямленное напряжение и напряжение, балансирующее мост, через резисторы R7 и R8 поступают на входы усилителя постоянного тока, расположенного в микросхеме DA1. В зависимости от состояния баланса моста сигнал индикации поступает на один из светодиодов VD5 или VD6 - типа АЛЗО7. Таким образом, при балансе моста (отсутствие сигнала) включен светодиод VD5, а при наличии сигнала (нарушение баланса моста) - светодиод VD6.

В качестве диодов VD1-VD4 можно использовать любые высокочастотные диоды. Светодиоды могут быть любого типа. В качестве источника питания используется источник постоянного тока напряжением 2,5-5 В.

Детектор поля с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией

Данное устройство имеет некоторое сходство с описанным выше. Так, имеется усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рис. 3.4.

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С2, L1, С3, L2, необходимый для подавления сигналов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоиз.чучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя pезистора R2 - напряжение высокой частоты через конденсатор С5 поступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4. Работа моста уже была подробно описана выше.

Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DА1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа, КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут. При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным-свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DА1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания устанавливается подстроечным резистором R33 при настройке. Все устpoйство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 - любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 - 8 витков, катушка L2 - 6 витков. Резистор R4 - любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 - любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор RЗ6 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет. Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1-2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.

Детектор поля с логарифмической шкалой на 12 светодиодах и звуковой индикацией

В состав детектора поля входят ФВЧ, усилитель ВЧ, диодный детектор, усилитель постоянного тока с логарифмической зависимостью коэффициента усиления, звуковой генератор с изменяющейся частотой и светодиодная шкала из 12 светодиодов. Детектор способен регистрировать работающие радиомикрофоны в диапазоне частот 20-600 МГц. Принципиальная схема прибора приведена на рис. 3.5.

Сигнал, наводимый в антенне, фильтруется ФВЧ на элементах С2, L1, С3, L2 и поступает на широкополосный апериодический усилитель. Последний выполнен на высокочастотном транзисторе VT1 типа КТ3101. Нагрузкой усилителя служит эмиттерный повторитель на транзисторе VT2 типа КТЗ101. Сигнал, снимаемый с регулятора чувствительности - резистора R4, поступает через конденсатор С6 на диодный детектор, собранный на диоде VD1 типа Д9Б. Высокочастотные составляющие фильтруются RC-фильтрами R5, С7 и R6, С8. Низкочастотный сигнал поступает на усилитель на микросхеме DA1 типа КР140УД1208. Коэффициент усиления этого усилителя определяется значением резистора R9. При малом уровне входного сигнала усилитель на DA1 имеет большое усиление. По мере увеличения сигнала происходит открывание диода VD2 типа КД522, сопротивление которого изменяется по логарифмическому закону. Это приводит к изменению сопротивления обратной связи также по логарифмическому закону. С выхода усилителя на микросхеме DA1 сигнал поступает на светодиодный индикатор и звуковой генератор.

Звуковой генератор выполнен на транзисторе VT3 типа КТ315 и микросхеме DD1 типа К561ЛА7. Конденсатор С9 заряжается через резистор R11 до напряжения открывания транзистора VT3. Это приводит к смене уровня логической единицы на уровень логического нуля на коллекторе транзистора VT3. При этом катод диода VD3 типа КД522 оказывается подключенным через резистор R18 к минусу источника питания. Конденсатор С9 быстро разряжается через цепь VD3, К18, что ведет за собой закрывание транзистора VT3. Конденсатор С9 снова начинает заряжаться и весь процесс повторяется. Прямоугольные импульсы преобразуются пьезокерамическим преобразователем ZQ1 типа ЗП-22 в звуковые. При увеличении напряжения на выходе усилителя DA1 уменьшается время заряда конденсатора С9 до напряжения открывания транзистора VT3, а это, в свою очередь, приводит к увеличению частоты следования импульсов генератора. Таким образом, при увеличении уровня входного сигнала происходит повышение тональности звукового сигнала.

Основой светодиодного индикатора, является микросхема DA2 типа КМ1003ПП2. Микросхема КМ1003ПП2 является специализированной и выполняет функцию управления светодиодной шкалой, обеспечивая высвечивание столбика на шкале из 12 светодиодов, которые загораются поочередно при изменении входного напряжения от минимального до максимального значения. Яркость свечения светодиодов поддерживается постоянной. Входной сигнал, через делитель напряжения на резисторах R13, R16, поступает на вход микросхемы DA2 (вывод 17). На выводы 16 и 3 микросхемы DA2 подаются уровни опорного напряжения, определяющие, соответственно, минимальное (светодиоды не горят) и максимальное (горят все светодиоды) значения входного сигнала. Питается устройство от источника питания напряжением 5,6 В. Светодиод VD4 типа АЛЗО7 служит для индикации включения прибора.

Все используемые детали малогабаритные. Детали ФВЧ описаны выше. Микросхема DA1 может быть заменена на КР1407УД2 или любой другой операционный усилитель со своими цепями коррекции. Вместо микросхемы GD1 можно применить К561ЛЕ5. При замене диода VD1 на ГД507 диапазон прибора может быть увеличен до 900 МГц. Микросхема DA2 может быть заменена на A277D.

Работа с прибором аналогична вышеприведенному устройству. Чувствительность прибора регулируется резистором R4.