Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры на прогнозирование.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.25 Mб
Скачать

Определение

Заданы две выборки .

Вычисление корреляции Спирмена:

Коэффициент корреляции Спирмена вычисляется по формуле:

, где - ранг наблюдения в ряду , - ранг наблюдения в ряду .

Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.

Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.

Пусть даны две выборки коэффициент корреляции Пирсона рассчитывается по формуле:

где – выборочные средние и , – выборочные дисперсии, .

Коэффициент корреляции Пирсона называют также теснотой линейной связи:

  • линейно зависимы,

  • линейно независимы.

Коэффициент корреляции Кенделла (Kendall tau rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Кенделла является ранговой, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Заданы две выборки .

Вычисление корреляции Кенделла:

Коэффициент корреляции Кенделла вычисляется по формуле:

, где — количество инверсий, образованных величинами , расположенными в порядке возрастания соответствующих .

Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.

Условия применения и ограничения корреляционно-регрессионного метода

Поскольку корреляционная связь является статистической, первым условием возможности ее изучения является наличие данных по достаточно большой совокупности. По отдельным явлениям можно получить совершенно превратное представление о связи признаков, ибо в каждом отдельном явлении значения признаков, кроме закономерной составляющей, имеют случайное отклонение (вариацию). Например, сравнивая два хозяйства, одно из которых имеет лучшее качество почв, по уровню урожайности, можно обнаружить, что урожайность выше в хозяйстве с худшими почвами. Ведь урожайность зависит от сотен факторов и при том же самом качестве почв может быть и выше, и ниже. Но если сравнивать большое число хозяйств с лучшими почвами и большое число — с худшими, то средняя урожайность в первой группе окажется выше и станет возможным измерить достаточно точно параметры корреляционной связи.

Вторым условием закономерного проявления корреляционной связи служит условие, обеспечивающее надежное выражение закономерности в средней величине. Кроме уже указанного большого числа единиц совокупности для этого необходима достаточная однородность совокупности. Нарушение этого условия может извратить параметры корреляции. Например, в массе зерновых хозяйств уровень продукции с 1 га растет по мере концентрации площадей, т.е. он выше в крупных хозяйствах. В массе овощных и овощемолочных хозяйств (пригородный тип) наблюдается та же прямая связь уровня продукции с размером хозяйства. Но если соединить в общую неоднородную совокупность те и другие хозяйства, то связь уровня продукции с размером площади пашни (или посевной площади) получится обратной. Причина в том, что овощные и овощемолочные хозяйства, имея меньшую площадь, чем зерновые, производят больше продукции с 1 га ввиду большей интенсивности производства в данных отраслях.

В качестве третьего условия корреляционного анализа выдвигается необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей. Это условие связано с применением метода наименьших квадратов при расчете параметров корреляции: только при нормальном распределении метод наименьших квадратов дает оценки параметров, отвечающих принципам максимального правдоподобия.