
- •3.Физические и физико-химические свойства нефти.
- •4.Свойства природного газа.
- •5.Понятие «ловушка» ув. Классификация ловушек.
- •6.Понятие «залежь» ув. Классификация залежей.
- •7.Первичная и вторичная миграция ув.
- •8.Осадочно-миграционная теория происхождения нефти.
- •9.Основные закономерности размещения месторождений ув.
- •10.Нефтегазогеологическое районирование.
- •11.Основные нефтегазоносные провинции мира.
- •12. Основные нефтегазоносные провинции рф.
- •13.Нефтегазоносность рс(я).
- •1.2 Непско-Ботуобинские нефтегазовые месторождения
- •2.1 Географическое положение Тас-Юряхского нефтегазоносного месторождения
- •2.2 Нефть ботуобинского горизонтат Тас-юряхского месторождения
- •14.Основные показатели нефтегазового пласта.
- •15.Абсолютная и открытая пористости горных пород. Формулы.
- •16.Абсолютная и фазовая и относительная проницаемости. Формулы.
- •17.Удельная поверхность горных пород. Формула.
- •18.Виды залежей.
- •19.Состав и классификация нефти.
- •20.Давления насыщения нефти газом.
- •21.Растворимость газа и нефти. Коэффициент растворимости. Формула.
- •22.Нефтеотдача пласта.
- •23.Методы увеличения извлекаемых запасов нефти.
- •25. Ротор. Назначение, устройство, условия работы, основные требования. Расчет и выбор основных параметров ротора.
- •26. Вертлюги. Назначение, устройство, условия работы, основные требования. Расчет и выбор основных параметров вертлюга.
- •28.Буровые лебедки. Назначения, технологические функции и основные требования. Классификация. Тормозные устройства буровой лебедки. Назначения и классификации.
- •31. Буровые вышки. Назначения, основные требования, классификация. Башенные и мачтовые вышки. Основные параметры и технические характеристики. Классификация нагрузок, действующие на буровые вышки.
- •32. Последовательность проектирования конструкции скважины. Факторы, учитываемые при проектировании.
- •33. Этапы проектирования гидравлической программы промывки скважины буровыми растворами.
- •34. Принципы выбора способа бурения: основные критерии выбора, учет глубины скважины, температуры в стволе, осложненности бурения, проектного профиля и др. Факторов.
- •35. Выбор типа долота и режима бурения: критерии выбора, способы получения информации и её обработки для установления оптимальных режимов, регулирования величины параметра.
- •36. Принципиальная схема опробования продуктивного горизонта с помощью пластоиспытателя на трубах
- •37. Принципиальная схема одноступенчетого цементирования. Изменения давления в цементировочных насосах, учавсвующих в этом процессе.
- •38.Принципиальная схема двухступенчатого цементирования с разрывом во времени. Достоинство и недостатки.
- •39. Принцип расчета обсадной колонны на прочность при осевом растяжении для вертикальных скважин. Специфика расчета колонн для наклонных и искривленных скважин.
- •40. Основные факторы , влияющие на качество цементирование скважин и характер их влияния .
- •42. Способы оборудования нижнего участка скважины в зоне продуктивного пласта. Условия, при которых возможно применение каждого из этих способов.
- •43. Факторы, учитываемые при выборе тампонажного материала для цементирования конкретного интервала скважины.
- •44. Выбор колонкового набора для получения качественного керна.
- •45. Конструктивные особенности и области применения бурильных труб.
- •46. Принципы расчета бурильной колоны при бурении забойным двигателем.
- •47.Принципы расчета бурильной колонны при бурении роторным способом
- •48.Режим бурения. Методика его оптимизации
- •49. Классификация методов возбуждения притока при освоении скважин.
- •50. Классификация методов интенсификации притока в процессе освоения скважины.
- •51. Опишите технические средства для получения оперативной информации в процессе бурения.
- •52. Горно-геологические характеристики разреза, влияющие на возникновение осложнений их предупреждение и ликвидация.
- •53. Совмещенный график давлений при осложнении. Выбор первого варианта конструкции скважин.
- •54. Схема циркуляционной системы скважин.
- •55. Гидравлическое давление глинистых и цементных растворов после остановки циркуляции.
- •56. Поглощения. Причины их возникновения .
- •57. Поглощение в породах с закрытыми трещинами. Особенности индикаторных кривых. Гидроразрыв и его предупреждение.
- •58. Оценка эффективности работ по ликвидации поглощений
- •59. Способы борьбы с поглощением в процессе вскрытия зоны поглощения
- •60. Гнвп.Их причины,признаки поступления пластовых флюидов. Классификация и распознование видов проявлений.
- •61. Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.
- •63. Параметры системы разработки: параметр плотности сетки скважин Sc, параметр ω. Параметр , параметр а.П.Крылова Nкр.
- •64. Системы разработки при отсутствии воздействия на пласт и характеризующие их параметры.
- •65. Системы разработки с воздействием на пласты. Системы с законтурным воздействием (заводнением) и характеризующие их параметры.
- •66. Особенности применения горизонтальных скважин при разработке Талаканского нефтегазоконденсатного месторождения.
- •68. Задача рациональной разработки.
- •70.Объект и система разработки.
- •71.Факторы, влияющие на выделение объектов разработки.
- •72. Разработка нефтяных месторождений с применением заводнения. Основные показатели.
- •73. Основные факторы, влияющие на коэффициент вытеснения в процессе разработки месторождений с применением заводнения.
- •74.Факторы, влияющие на выделение объектов разработки.
- •75. Разработка нефтяных месторождений при упругом режиме
- •76. Разработка нефтяных месторождений при естественных режимах.
53. Совмещенный график давлений при осложнении. Выбор первого варианта конструкции скважин.
Совмещенный график давлений иллюстрирует изменение по глубине скважины давлений гидроразрыва пород, пластовых давлений и давлений столба бурового раствора. График строится на основании горно-геологических условий. При недостатке фактических данных они могут быть получены эмпирическим путем (прогнозные данные).
Совмещенный график давлений позволяет выделить в разрезе интервалы, несовместимые по условиям бурения. С учетом наличия геологических осложнений по графику совмещенных давлений решается вопрос о необходимости промежуточных (технических) колонн, их числа и глубины спуска.
Градиент пластового давления - отношение пластового давления в рассматриваемой точке пласта к глубине этой точки.
Градиент давления гидроразрыва - отношение давления гидроразрыва в рассматриваемой точке пласта к глубине этой точки.
Градиент гидростатического столба бурового раствора - отношение давления гидростатического столба БР в рассматриваемой точке скважины к глубине этой точки.
Под эквивалентом градиента давления понимают плотность жидкости, столб которой в скважине на глубине определения создает давление, равное пластовому или давлению гидроразрыва.
Для интервалов находятся значения эквивалентов градиентов пластовых давлений и давлений гидроразрыва слагающих пород по следующей формуле:
Эквиваленты градиентов пластовых давлений:
Эквиваленты градиентов гидроразрыва
На совмещенный график наносят точки эквивалентов и строят кривые эквивалентов градиентов давлений.
54. Схема циркуляционной системы скважин.
Буровые насосы и циркуляционная система выполняют следующие функции:
нагнетание бурового раствора в бурильную колонну для обеспечения циркуляции в скважине в процессе бурения и эффективной очистки забоя и долота от выбуренной породы, промывки, ликвидации аварий, создания скорости подъема раствора в затрубном пространстве, достаточной для выноса породы на поверхность;
п
одвод
к долоту гидравлической мощности,
обеспечивающей высокую скорость
истечения (до 180 м/с) раствора из его
насадок для частичного разрушения
породы и очистки забоя от выбуренных
частиц;подвод энергии к гидравлическому
забойному двигателю.
На рис. VII. 1 показаны схема циркуляции бурового раствора и примерное распределение потерь напора в отдельных элементах циркуляционной системы скважины глубиной 3000 м при бурении роторным способом.
В процессе бурения в большинстве случаев раствор циркулирует по замкнутому контуру. Из резервуаров 13 очищенный и подготовленный раствор поступает в подпорные насосы 14, которые подают его в буровые насосы /. Последние перекачивают раствор под высоким давлением (до 30 МПа) по нагнетательной линии, через стояк 2, гибкий рукав 3, вертлюг 4, ведущую трубу 5 к устью скважины 6. Часть давления насосов при этом расходуется на преодоление сопротивлений в наземной системе. Далее буровой раствор проходит по бурильной колонне 7 (бурильным трубам, УБТ и забойному двигателю 9) к долоту 10. На этом пути давление раствора снижается вследствие затрат энергии на преодоление гидравлических сопротивлений.
Затем буровой раствор вследствие разности давлений внутри бурильных труб и на забое скважины с большой скоростью выходит из насадок долота, очищая забой и долото от выбуренной породы. Оставшаяся часть энергии раствора затрачивается на подъем выбуренной породы и преодоление сопротивлений в затрубном кольцевом пространстве 8 . Поднятый на поверхность к устью 6 отработанный раствор проходит по растворопроводу 11 в блок очистки 12, где из него удаляются в амбар 15 частицы выбуренной породы, песок, ил, газ и другие примеси, поступает в резервуары 13 с устройствами 16 для восстановления его параметров и снова направляется в подпорные насосы.
Нагнетательная линия состоит из трубопровода высокого давления, по которому раствор подается от насосов / к стояку 2 и гибкому рукаву 3, соединяющему стояк 2 с вертлюгом 4. Напорная линия оборудуется задвижками и контрольно-измерительной аппаратурой. Для работы в районах с холодным климатом предусматривается система обогрева трубопроводов.
Сливная система оборудуется устройствами для очистки и приготовления бурового раствора, резервуарами, всасывающей линией, фильтрами, нагнетательными центробежными насосами, задвижками и емкостями для хранения раствора.