
- •Диод. Жұмысы, көрсеткіштері, сипаттамалары, таңбалануы
- •2. Дрейфтік биполяр транзистор. Құрылысы, жұмысы, шектiк жиiлiгi.
- •Тұрақты ток күшейткіштері (ттк)
- •1. Фотодиодтар. Жұмысы. Көрсеткіштері. Сипаттамалары. Таңбалануы.
- •2. Шалаөткізгіштердің өткізгіштігі. Олардың аймақтық теория бойынша құрылымы. Ферми деңгейі.
- •3. Біртактлі каскадтар. Жүктемелік сипаттамаларды сызу. Қисытық бұзылыстарды анықтау.
- •23 Сурет – Эберс–Моллдың математикалық нобайы
- •19 Сурет – Биполярлық транзистордың құрылысы а)
- •3. Аналогты сигналдар қосуыштары. Интеграторлар және дифференциаторлар.
- •Диод. Жұмысы, көрсеткіштері, сипаттамалары, таңбалануы.
- •1.Биполярлық транзисторлар. Жұмысы, көрсеткіштері, сипаттамалары, таңбалануы.
- •19 А)Сурет – Биполярлық транзистордың құрылысы
- •20 Сурет б)
- •2.Тіректі диодтар. Құрылысы, жұмысы.
- •Билет №27
- •2.Транзисторларды схемаға ортақ эмиттермен қосу. Көрсеткіштері, сипаттамалары.
- •Билет №28
- •Донорлық және акцепторлық қоспалар.
- •Шалаөткізгіш стабилитрон. Құрылысы, жұмысы.
- •6.1 Басқарушы p-n өткелі бар өрістік транзистор
- •Билет №29
- •Билет №30
- •Оқшауланған жаппасы бар өрістік транзисторлар немесе мтш транзисторлар. Сипаттамалары, көрсеткіштері, белгіленуі.
- •31 Сурет Басқарушы «p-n»- өткелі бар «n» арналы «р» өт.
- •3. Дифференциалдық күшейткіштер.
- •1) Стабилитрон. Вольтамперлік сипаттамасы, көрсеткіштері. Стабистор.
- •3) Дифференциалдік күшейткіштер.
- •1) Диодтық оптрон. Құрылысы, таңбалануы, көрсеткіштері.
- •2) Өрісті транзистордың жұмыс істеу принципі.
- •3) Операциалық күшейткіштер. Оларға қойылған талаптар.
- •1) Транзистордың т-әрпі тәрізді физикалық эквивалент схемасы, h – параметрлер.
- •Малосигнальная эквивалентная схема транзистора для включения с об
- •2) Диодтар. Таңбалануы, құрылысы.
- •3) Биполярлық транзистордың жұмыс атқару принципі.
- •19 Сурет – Биполярлық транзистордың құрылысы а)
- •2) Транзистрлардың құрылысы, вольтамперлік сипаттамасы, жұмысы.
- •3) Қүймалық және қүйма- тиектік сипаттамалар.
- •3) Қушейткіштер.
Биполяр транзистор. Жұмысы, вольтамперлік сипаттамасы, таңбалануы.
Биполярлы транзистор дегеніміз шалаөткізгіш монокристалдың ішінде кезектесіп (алмасып) тұратын өткізгіштігі үш аймақ болатын р–п–р– немесе п–р–п құрылым. (19-а, Суретті қара).
19 Сурет – Биполярлық транзистордың құрылысы а)
Ортасындағы аймақты “Б”база деп, ал шеткі аймақтарды “Э” эмиттер және “К” коллектор деп атайды. Эмиттер, коллектор және база аймақтары транзисторды электр тізбегіне қосуға мүмкіндік беретін шықпалармен жабдықталған (қамдалған).
Эмиттер мен база құратын өткелді эмиттерлік (ЭӨ) өткел деп, ал коллектор мен база құратын өткелді коллекторлық (КӨ) деп атайды. Транзистор өткелдерінің әрқайсысына тік немесе кері ығысу беріле алады. ЭӨ-ге тік ығысу түскенде эмиттер ішінен базаға оған негізгі болмайтын тасымалдаушылар (тасушылар) инжекцияланады, ал КӨ-ге кері кернеу түсіп тұрғанда база аймағы арқылы өтіп келіп тұрған тасушылардың экстракциясы жүреді. БТ- де эмиттердің ішіндегі қоспалардың үйірленуі (концентрациясы) базаның ішіндегісінен бірнеше рет (порядок) жоғары болады, яғни ЭӨ- біржақты. Коллектордың ішіндегі қоспалардың үйірленуі эмиттердегідей (балқытылумен әзірленген транзистор) немесе шамамен алғанда базадағыдай (планарлық транзистор) болуы мүмкін. Әдетте транзисторда КӨ-нің ауданы ЭӨ-нің ауданынан үлкен, сондықтан бұл жағдай база ішіне инжекцияланған тасушылардың көбін жинап алуға мүмкіндік береді. База аймағында заряд тасушылардың өту механизміне тәуелді дрейфтік және дрейфсіздік транзисторларды айырып танайды.
2. Интегралдық микросхемалардың жасалу технологиясы және интеграция дәрежесi бойынша жiктелуi .
Интегралдық микросхема дегеніміз біркелкі технологиялық циклда, бір бүтін көлемде немесе жартылайөткізгіш кішкентай кристалдың үстінде біртұтас жасалған, активті және пассивті элементтерден, оларды қосатын және қосылғыш элементтерден тұратын функционалдық (күшейткіштік, түзеткіштік, генераторлық және тағы басқалары) түйін.
Конструктивті – технолнологиялық белгілері бойынша интегралдық микросхемалар жартылайөткізгіштік (монолитті), пленкалық, гибридтік және бір-бірімен сыйысқан ИМС-тар деген кластарға бөлінеді.
Жартылайөткізгіштік ИМС-тарда барлық элементтер жартылайөткізгіш технологиялық операция процесінде ортақ жартылайөткізгіш астарлық қабаттың (кремнийдің кристалы) үстінде жасалынады.
Бірімен-бірі сыйысқан ИМС-тарды жартылайөткізгіш және пленкалық микросхемалардың технологиясы негізінде жасайды, яғни транзисторлар мен диодтарды жартылайөткізгіштік ИМС-тардікіндей жасап, ал пассивті элементтер мен өзара қосылыстарды пленкалар түрінде астарлық қабаттың үстіне салады. бірімен-бірін изоляциялап схема құру үшін мынандай технологиялық процесстерді қолданады:
1) кремнийді тотықтыру;
2) фотолитография,
3) диффузия,
4) эпитаксиальды өсіру;
5) металлизация.
ГОСТ 17021-75 бойынша, бір микросхеманың корпусының ішіндегі элементтердің санына байланысты алты дәрежелі интеграция бар:
бірінші дәрежелі – 1-ден 10-ға дейін,
екінші дәрежелі - 10-нан 10 –ге дейін,
үшінші дәрежелі - дейін,
төртінші дәрежелі - дейін,
бесінші дәрежелі - дейін,
алтыншы дәрежелі - дейін элементтер санынан тұрады.