
- •1 «Записки Русского технического общества», 1868, вып. 7, с. 399,
- •В дополнение к классификации Комиссии по стандартизации сэВа автор включил в эту схему новый вид термической обработки, которому дано название «закалка с плавлением поверхности» (см. Гл. X).
- •§ 1. Изменение структуры сплавов при гомогеиизационном отжиге
- •Основные структурные изменения
- •Побочные структурные изменения
- •Раздел 14
- •Раздел 449
- •§ 2. Изменение свойств сплавов при гомогенизационном отжиге
- •Деформированные сплавы
- •§ 3. Гомогенизация с нагревом выше температуры неравновесного солидуса
- •Глава II
- •§ 4. Изменение структуры металла при холодной обработке давлением
- •Изменение формы зерен (
- •Изменение внутреннего строения зерен
- •§ 5. Изменение свойств металла при холодной обработке давлением
- •§ 6. Изменение структуры
- •4 Гомологической, или соответственной, температурой называют отношение данной температуры к температуре начала плавления по абсолютной шкале.
- •Полигоиизация
- •§ 7. Первичная рекристаллизация (рекристаллизация обработки)
- •1. Механизм зарождения центров рекристаллизации
- •Температура начала рекристаллизации
- •Температура конца рекристаллизации
- •{*160 200 2It0t”280 320 360 Температура°с
- •Рост зереи при первичной рекристаллизации
- •§ 8. Собирательная рекристаллизация
- •§ 9. Текстуры рекристаллизации
- •Основные закономерности образования текстур рекристаллизации
- •Природа текстур рекристаллизации
- •§ 10. Вторичная рекристаллизация
- •Закономерности вторичной рекристаллизации
- •Природа вторичной рекристаллизации
- •§ 11. Размер рекристаллизованного зерна
- •2. Влияние степени деформации
- •Степень деформации
- •Диаграммы рекристаллизации
- •Разнозернистые структуры
- •§ 12. Изменение свойств металла при дорекристаллизациоином и рекристаллизационном отжиге
- •Упрочнение при дорекристаллизациоином отжиге
- •Изменение электросопротивления при отжиге
- •§ 13. Анизотропия свойств отожженного металла
- •Фестонистость
- •Текстурованная трансформаторная сталь
- •§ 14. Выбор режимов дорекристаллизационного и рекристаллизационного отжига
- •Дорекристаллизационный отжиг
- •Рекристаллизационный отжиг
- •Глава III
- •Отжиг, уменьшающий напряжения
- •§ 15. Возникновение и роль остаточных напряжений
- •§ 16. Уменьшение остаточных напряжений при отжиге
- •1 О механизме нормальных превращений см. В § 34.
- •Глава IIV
- •§17. Термодинамика фазовых превращений
- •Степень переохлаждения, °с
- •ТепператураТ
- •§ 18. Роль строения межфазных границ при фазовых превращениях
- •§ 19. Гомогенное и гетерогенное зарождение фаз
- •Зарождение на границах зерен
- •Зарождение на дислокациях
- •Зарождение на дефектах упаковки
- •Зарождение на включениях
- •Зарождение в микронесплошностях
- •§ 20. Образование промежуточных метастабильных фаз
- •§ 21. Кинетика фазовых превращений
- •Глава V отжиг сталей
- •Механизм и кинетика аустенитизацин
- •В основу построения стандартной шкалы микроструктур положена формула
- •§ 23. Структурная наследственность и перекристаллизация аустенита
- •§ 7): А) «набором» растущим субзерном высокоугловон
- •§ 24. Диффузионные превращения аустенита при охлаждении
- •Перлитное превращение
- •Превращения аустенита в доэвтектоидных и заэвтектоидных сталях
- •Влияние легирующих элементов на перлитное превращение
- •§ 25. Разновидности отжига сталей
- •Неполный отжиг
- •Сфероидизирующий отжиг
- •Изотермический отжиг
- •§ 23). Например, отливки из стали 35j1 следует нагревать под нормализацию до 950—
- •6. Патентирование
- •Глава VI отжиг чугунов
- •§ 26. Графитизирующий отжиг чугуна
- •Отжиг для устранения отбела
- •Низкотемпературный смягчающий отжиг
- •§ 27. Нормализация чугуна
- •Глава VII
- •Отжиг цветных металлов и сплавов
- •Смягчающий гетерогенизационный отжиг деформированных полуфабрикатов
- •Гетерогенизационный отжиг .
- •Для улучшения деформируемости слитков
- •Гетерогенизационный отжиг
- •Для повышения коррозионной стойкости
- •§ 29. Отжиг с фазовой перекристаллизацией
- •Третий закалка
- •Глава VIII
- •Закалка без полиморфного превращения
- •§ 30. Изменение свойств при закалке без полиморфного превращения
- •§ 31. Нагрев и охлаждение при закалке без полиморфного превращения
- •Нагрев при закалке
- •Охлаждение при закалке
- •Сплав в95 д1 д16 д19 1201 ав ак4-1
- •Глава IX
- •Закалка с полиморфным превращением
- •§ 32. Особенности мартенснтного превращения в углеродистых сталях
- •Раздел 14
- •Раздел 449
- •§ 33. Термодинамика мартенситных превращений
- •Температура начала мартенснтного превращения
- •Обратимость мартенситного превращения
- •§ 34. Механизм мартенснтного превращения
- •Сдвиговый (мартенситный) и нормальный механизмы перестройки решетки
- •Термоупругое равновесие фаз
- •Условии реализации нормального и мартенснтного превращений
- •Кристаллогеометрия превращения аустенита в мартенсит
- •Инвариантность габитусной плоскости мартенсита и аккомодационная деформация при мартенситном превращении
- •Зародыши мартенсита
- •§ 35. Микроструктура и субструктура сплавов, закаленных на мартенсит
- •Микроструктура
- •Субструктура
- •§ 36. Кинетика мартенситных превращений
- •Термическая стабилизация аустенита
- •§ 37. Влияние деформации на мартенситное превращение
- •Мартенсит напряжения и мартенсит деформации
- •Эффект запоминания формы и сверхупругость
- •Механическая стабилизация аустенита
- •§ 38. Изменение свойств сплавов при закалке на мартенсит
- •Упрочнение при закалке
- •Изменение пластичности при закалке
- •§ 39. Бейнитное превращение
- •Строение бейиита
- •Кинетика бейнитного превращения
- •Механические свойства стали с беннитной структурой
- •§ 40. Прокаливаемость сталей
- •1. Прокаливаемость и критическая скорость охлаждения
- •§ 41. Объемная закалка сталей
- •Нагрев под закалку
- •Охлаждение при закалке
- •Способы закалки
- •Закалка с обработкой холодом
- •Закалка с температур межкритического интервала
- •§ 42. Поверхностная закалка сталей
- •Закалка с индукционным нагревом
- •Закалка с лазерным нагревом
- •Закалка с нагревом пламенем горелки
- •Глава X
- •§ 43. Общие закономерности формирования структуры при сверхбыстром охлаждении расплава
- •Микроструктура
- •Фазовый состав
- •§ 44. Изменение структуры и свойств при закалке с плавлением поверхности
- •Закалка чугунов
- •Закалка сталей
- •Закалка сплавов цветных металлов
- •Глава XI старение
- •§ 45. Термодинамика процессов выделения из твердого раствора
- •§ 46. Структурные изменения при старении
- •Типы выделений
- •Структурные изменения при спинодальном распаде
- •Непрерывный и прерывистый распад
- •§ 47. Изменение свойств сплавов при старении
- •Природа упрочнения прн старении
- •1 Торможение дислокации днсперснымн частицами подробнее рассматривается в курсах «Кристаллография н дефекты кристаллической решетки металлов» и «Механические свойства металлов».
- •Величина упрочнения
- •§ 48. Влияние состава сплава на старение
- •Влияние состава в двойных системах
- •Влияние состава в тройных системах
- •Влияние малых добавок и примесей
- •§ 49. Выбор режима старения
- •Выбор температуры и продолжительности старения
- •Ступенчатое старение
- •Старение под напряжением I
- •§ 50. Возврат после старения
- •Продолжительность старения, сут
- •Глава XII отпуск
- •§ 51. Структурные изменения при отпуске сталей
- •Отпуск углеродистых сталей
- •Влияние легирующих элементов
- •§ 52. Изменение механических свойств при отпуске сталей и выбор режима отпуска
- •Углеродистые стали
- •Легированные стали
- •§ 46, П. 2 и § 49, п. 3), при отпуске под напряжением сталей важную роль могут
- •§ 53. Отпускная хрупкость
- •Необратимая отпускная хрупкость
- •Обратимая отпускная хрупкость
- •Вреля выдержки, ч
- •Глава XIII
- •§ 54. Структурные изменения во время горячей деформации
- •1. Динамический возврат
- •§ 55. Структурные изменения по окончании горячей деформации
- •Глава XIV
- •§ 56. Низкотемпературная термомеханическая обработка (нтмо)
- •§ 57. Высокотемпературная термомеханическая обработка (втмо)
- •§ 58. Предварительная термомеханическая обработка (птмо)
- •Глава XV
- •§ 59. Низкотемпературная термомеханическая обработка (нтмо)
- •§ 60. Высокотемпературная термомеханическая обработка (втмо)
- •§ 61. Термомеханическая обработка с деформацией во время перлитного превращения
- •§ 62. Контролируемая прокатка
- •§ 63. Предварительная термомеханическая обработка (птмо)
- •Глава XVI
- •§ 64. Образование однофазной диффузионной зоны
- •§ 65. Образование многофазной диффузионной зоны
- •§ 66. Особенности строения диффузионной зоны
- •Глава XVII
- •§ 67. Диффузионное насыщение неметаллами
- •§ 68. Диффузионное насыщение металлами
- •§ 69. Диффузионное удаление элементов
- •1. Влияние температуры и времени отжига
- •1 Термин предложили, исходя из названия продукта превращения — «массивная фаза» (по аналогии с названиями других превращений — перлитного и мартенснтного).
- •1. Спинодальний распад
- •I в реальных условиях участок вс имеет небольшой наклон.
- •I о роли термодинамической активности элементов в диффузионных процессах см. В § 1,
§ 7. Первичная рекристаллизация (рекристаллизация обработки)
Начиная с определенной температуры при отжиге холоднодеформированного металла происходят сильные изменения микроструктуры, которые относятся к процессу, называемому рекристаллизацией. Наряду с вытянутыми деформированными зернами даже при небольших увеличениях светового микроскопа можно различить новые, более или менее равноосные рекристаллизованные зерна. По мере увеличения времени или. температуры отжига площадь шлифа, занятая новыми зернами, возрастает, а старые деформированные зерна постепенно исчезают. Рентгеновский анализ, а позднее электронная микроскопия фольг показали, что новые равноосные зерна отличаются от старых вытянутых зерен деформированной матрицы не только формой, но и, что гораздо важнее, более совершенным внутренним строением, резко пониженной плотностью дислокаций. Если плотность дислокаций в сильнодеформиро- ванном металле составляет 1011—1012 см-2, то после прохождения рекристаллизации она снижается до 10®— 108 см-2.
В отличие от полигонизованной структуры, которая также более совершенна, чем деформированная матрица, рекристаллизованные зерна отделены от матрицы не малоугловыми, как субзерна, а высокоугловыми границами. Это различие имеет принципиальное значение.
Благодаря быстрой миграции высокоугловых границ рекристаллизованные зерна интенсивно «поедают» деформированную матрицу. Субзерна на стадии полигонизации имеют ориентацию деформированного кристаллита, а рост рекристаллизованного зерна, окруженного высокоугловой границей, может быть связан с сильной переориентацией кристаллической решетки.
Образование и рост зерен с более совершенной структурой, окруженных высокоугловыми границами, за счет исходных деформированных зерен той же фазы называют первичной рекристаллизацией или рекристаллизацией обработки.
Кинетика рекристаллизации похожа на кинетику фазового превращения — в обоих случаях в изотермических условиях она изображается кривой сигмаидального вида, характер которой объяснен в § 21 (сравните рис. 21 и 68).
П
й
ри анализе кинетики первичной рекристаллизации оперируют теми же параметрами с. з. ц. и л. с. р., что и вкинетике фазовых превращений. Скорость зарождения центров рекристаллизации (с. з. ц.)—это число центров рекристаллизованных зерен, возникающих в единицу времени в единице объема. Линейная скорость роста (л. с. р.) является скоростью перемещения границы зерна. С ростом температуры оба параметра экспоненциально увеличиваются.
Некоторое время новые зерна не обнаруживаются. Эго время называют инкубационным периодом. С увеличением степени деформации и температуры отжига инкубационный период первичной рекристаллизации уменьшается.
Время
выдержки,
мин
Рис.
21. Развитие первичной рекристаллизации
при разных температурах в алюминии
чистотой 99,96 % после растяжения на 10 %
(Андерсон и Мэйл)
Кинетика первичной рекристаллизации резко отличается от кинетики возврата. Если возврат не имеет инкубационного периода, скорость его максимальна в начальный период и непрерывно уменьшается во время изотермической выдержки (см. рис. 16), то рекристаллизация, наоборот, начинается после инкубационного периода, а скорость ее (приращение рекристаллизованного объема в единицу времени) нарастает от нуля до максимума, а затем снижается. Затухание рекристаллизации вызвано прекращением роста все большего числа новых зерен из-за их сопрокос- новения между собой.
Кинетика первичной рекристаллизации прн постоянной температуре весьма удовлетворительно описывается уравнением Аврами:
V% IV0— 1 — exp (—■ Bxk), (8)
г
L ,
де Vt/V0 — доля объема, рекристаллизованного за время т; В — коэффициент, зависящий от с. з. ц. и л. с. р., т. е.от температуры и степени деформации; k находится в интервале от 1 до 4,
Термодинамическим стимулом первичной рекристаллизации является накопленная при пластической деформации энергия, связанная с дислокациями, которые образуют хаотичные скопления, объемные стенки ячеек или же плоские субграницы. Уменьшение плотности дислокаций при первичной рекристаллизации приводит к высвобождению основной доли этой накопленной энергии, что обнаруживается при калориметрических исследованиях.
Уменьшение энергии в объеме кристаллов, происходящее в процессе повышения их структурного совершенства, перекрывает возрастание поверхностной энергии при любых, даже самых малых размерах рекристаллизованного зерна. Совсем не обязательно, чтобы зерна в рекристалли- зованном металле были крупнее, чем в деформированном. К моменту окончания первичной рекристаллизации• суммарная поверхность равноосных зерен, выросших из множества центров, может быть больше суммарной поверхности вытянутых деформированных зерен. Несмотря на это, энергия Гиббса рекристаллизованного металла меньше, чем деформированного, из-за уменьшения общей плотности дислокаций внутри зерна.