Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MO_teoria-otvety.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.51 Mб
Скачать
  1. Определение поверхности (линии) уровня и направления наискорейшего роста целевой функции. Критерий оптимальности

Критерий оптимальности (критерий оптимизации) — характерный показатель решения задачи, по значению которого оценивается оптимальность найденного решения, то есть максимальное удовлетворение поставленным требованиям. В одной задаче может быть установлено несколько критериев оптимальности.

Правильный выбор критериев играет существенную роль в выборе оптимального решения. В теории принятия решений не найдено общего метода выбора критериев оптимальности. В основном руководствуются опытом или рекомендациями. Наиболее изучен вопрос для финансово-экономических задач, в которых зачастую применяется единственный критерий — максимум показателя эффективности, прибыли, либо максимум рентабельности, либо минимум срока окупаемости и т. п. Применение для технических задач только одного критерия (например, максимум уровня безопасности, минимум потребления энергии, минимум экологического ущерба) часто приводит к абсурдным результатам, выходящим за область допустимых решений, поэтому обычно сочетается с экономическими критериями (например, минимум стоимости или максимум дохода).

Наиболее разработаны методы однокритериальной оптимизации, в большинстве случаев позволяющие получить однозначное решение. В задачах многокритериальной оптимизации абсолютно лучшее решение выбрать невозможно (за исключением частных случаев), так как при переходе от одного варианта к другому, как правило, улучшаются значения одних критериев, но ухудшаются значения других. Состав таких критериев называется противоречивым, и окончательно выбранное решение всегда будет компромиссным. Компромисс разрешается введением тех или иных дополнительных ограничений или субъективных предположений. Поэтому невозможно говорить об объективном единственном решении такой задачи.

Часто многокритериальную задачу сводят к однокритериальной применением «свёртки» критериев в один комплексный, называемый целевой функцией (или функцией полезности).

ГРАДИЕНТ- одно из основных понятий векторного анализа и теории нелинейных отображений.

Градиентом скалярной функции векторного аргумента из евклидова пространства Е n наз. производная функции f(t).по векторному аргументу t, то есть n-мерный вектор с компонентами , . Существуют следующие обозначения Г. функции f(t) в точке :

Г. представляет собой ковариантный вектор: компоненты Г., вычисленные в двух различных координатных системах и , связаны соотношениями:

Вектор , начало к-рого помещено в точку , указывает направление наискорейшего роста функции , ортогональное линии или поверхности уровня функции , проходящей через точку

Производная функции в точке в направлении произвольного единичного вектора равна проекции Г. функции на это направление:

где - угол между и . Максимум производной достигается при , т. е. в направлении Г., и равен длине Г.

  1. Задачи на условный экстремум. Метод множителей Лагранжа. Необходимое условие существования условного локального экстремума функции

Пусть и , — дважды непрерывно дифференцируемые скалярные функции векторного аргумента . Требуется найти экстремум функции при условии, что аргумент удовлетворяет системе ограничений: , (последнее условие называют также условием связи).

Наиболее простым методом нахождения условного экстремума является сведение задачи к нахождению безусловного экстремума путем разрешения уравнения связи относительно s переменных и последующей их подстановки в целевую функцию.

В более сложных случаях выразить переменные удается не всегда. Соответственно, описанный выше подход применим не ко всем задачам. Более универсальным методом решения задач отыскания условного экстремума является метод множителей Лагранжа. Он основан на применении следующей теоремы. Если точка является точкой экстремума функции в области, определяемой уравнениями , , то (при некоторых дополнительных условиях) существует такой s-мерный вектор , что точка является стационарной точкой функции:

Алгоритм метода множителей Лагранжа

1 . Составить функцию Лагранжа:

где — множитель Лагранжа, соответствующий i-му ограничению.

2. Найти частные производные функции Лагранжа и приравнять их к нулю

3. Решив получившуюся систему из n + s уравнений, найти стационарные точки.

Заметим, что в стационарных точках выполняется необходимое, но не достаточное условие экстремума функции. Анализ стационарной точки на наличие в ней экстремума в данном случае достаточно сложен. Поэтому метод множителей Лагранжа в основном используют в тех случаях, когда о существовании минимума или максимума исследуемой функции заранее известно из геометрических или содержательных соображений.

При решении некоторых экономических задач множители Лагранжа имеют определенное смысловое содержание. Так, если — прибыль предприятия при плане производства n товаров , — издержки i-го ресурса, то — оценка этого ресурса, характеризующая скорость изменения оптимума целевой функции в зависимости от изменения i-го ресурса.

Необходимые условия существования локальных экстремумов

Из леммы Ферма вытекает следующее:

Пусть точка является точкой экстремума функции , определенной в некоторой окрестности точки .

Тогда либо производная не существует, либо .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]