
- •Введение
- •Часть I строение и физиология микроорганизмов
- •Глава I. Строение и принципы систематики микроорганизмов
- •Бактерии
- •Неклеточные формы жизни
- •Водоросли и водные грибы
- •Простейшие
- •Глава II. Химический состав клетки
- •Вода и минеральные соли
- •Органические вещества клетки
- •Синтез белка
- •Мутагенез
- •Глава. III. Ферменты
- •Ферменты—биологические катализаторы
- •Строение и свойства ферментов
- •Принципы классификации ферментов
- •Окислительно-восстановительные ферменты (оксиредуктазы)
- •Регуляция синтеза ферментов
- •Глава IV. Получение энергии микроорганизмами Энергетический и конструктивный обмены
- •Получение энергии литотрофами
- •Получение энергии органотрофами
- •Взаимосвязь процессов обмена в организме
- •Глава V. Закономерности роста и развития микробных культур Рост, развитие, размножение
- •Понятие об абсолютной и относительной скорости роста
- •Особенности выращивания микроорганизмов в проточных культурах
- •Фазы развития микробной культуры
- •Влияние лимитирующих факторов на скорость роста
- •Скорость роста и физиологическая активность
- •Глава VI. Влияние внешних факторов на микроорганизмы Влияние температуры
- •Влияние влажности
- •Влияние лучистой энергии
- •Влияние осмотического давления
- •Активная реакция среды и окислительно-восстановительный потенциал
- •Часть II участие микроорганизмов в превращении веществ
- •Глава VII. Круговорот углерода
- •Распространение микроорганизмов в природе
- •Круговорот углерода и участие в нем микроорганизмов
- •Глава VIIII. Расщепление органических соединений в анаэробных условиях
- •Сбраживание углеводов
- •Маслянокислое брожение
- •Cбраживание жиров
- •Анаэробное расщепление белков
- •Глава IX. Расщепление органинеских соединений в аэробных условиях
- •Окисление углеводов
- •Окисление этанола. Получение уксусной кислоты
- •Окисление жиров
- •Окисление углеводородов
- •Расщепление азотсодержащих соединений
- •Глава X. Превращение соединений азота микроорганизмами Нитрификация
- •Денитрификация
- •Фиксация молекулярного азота
- •Глава XI. Превращение соединений серы микроорганизмами
- •Окисление соединений серы
- •Восстановление соединений серы
- •Глава XIII. Превращение соединений металлов микроорганизмами
- •Окисление соединений записного железа
- •Окисление соединений марганца
- •Выщелачивание металлов из руд
- •Часть III загрязнение и самоочищение водоемов
- •Глава XIIII. Экологические системы пресных водоемов Понятие экосистемы
- •Роль окружающей среды в формировании экосистемы
- •Особенности речных экосистем
- •Особенности озерных экосистем
- •Особенности экосистем водохранилищ
- •Глава XIV. Загрязнение водоемов
- •Характеристика основных видов загрязнения
- •Виды воздействия сточных вод на водоемы
- •Глава XV. Загрязнение водоемов и распространение водных инфекций
- •Понятие инфекции
- •Распространение инфекции
- •Водные инфекции
- •Понятие иммунитета
- •Противоэпидемические мероприятия
- •Глава XVI. Круговорот веществ и энергии в водоемах. Самоочищение водоемов
- •Поступление органических веществ в водоем с водосборной площади
- •Cинтез первичной продукции в водоеме
- •Превращение и деструкция органического вещества
- •Роль отдельных групп гидробионтов в самоочищении водоемов
- •Глава XVIII. Оценка степени загрязненности водоема Классификация водоемов по степени загрязненности
- •Санитарно-бактериологический анализ
- •Часть IV биологические процессы в системах Глава XVIII. Биологические помехи в водоснабжении
- •Помехи, вызываеалые аллохтонными организмами
- •Помехи, вызываемые автохтонными организмами
- •Влияние обрастаний на качество воды и материал труб
- •Меры борьбы с биологическими помехами
- •Глава XIX. Население очистных сооружений канализации
- •Глава XX. Экологические системы очистных сооружений канализации
- •Экосистемы искусственных аэрационных очистных сооружений
- •Экологические системы естественных аэрационных очистных сооружений
- •Экосистемы анаэробных очистных сооружений
- •Литература
- •Оглавление
Получение энергии органотрофами
Органотрофные бактерии, так же как литотрофные, могут быть разделены на фото- и хемоорганотрофов. Фотоорганотрофы представляют собой весьма ограниченную группу несерных пурпурных бактерий. К хемоорганотрофам относится подавляющее большинство микроорганизмов.
У хемоорганотрофов различают следующие способы получения энергии.
Дыхание—конечным акцептором электронов служит молекулярный кислород; конечными продуктами реакции—углекислота и вода.
Неполное окисление—акцептором электронов также служит молекулярный кислород, но процесс заканчивается образованием неполностью окисленных продуктов. Пример неполного окисления—окисление уксуснокислыми бактериями этанола в уксусную кислоту и сорбита в сорбозу.
Анаэробное дыхание—акцептором электронов служит связанный кислород органических и неорганических соединений. Окисление органических соединений может быть как полным, так и неполным.
Брожение—процесс сопряженного окисления-восстановления одних и тех же молекул субстрата. Акцепторы электронов—промежуточные продукты реакции. В результате брожения образуются органические кислоты, спирты, кетоны и другие соединения,
Во всех перечисленных процессах выделившаяся энергия запасается в макроэргических связях АТФ.
Взаимосвязь процессов обмена в организме
Ассимиляция и диссимиляция тесно связаны между собой и обычно протекают сопряжено. Для ассимиляции необходима энергия, которая выделяется при распаде, а процесс диссимиляции невозможен без ферментов, вырабатывающихся при синтезе.
Обновление компонентов клетки происходит постоянно. Даже при отсутствии роста молекулы все время расщепляются и синтезируются вновь.
Применение современных методов исследования и особенно эксперименты с мечеными атомами позволили установить, что промежуточные продукты, образующиеся при расщеплении, во многих случаях служат сырьем для построения новых соединений. Пировиноградная кислота, рибоза, ацетилкофермент. А в процессах синтеза играют не меньшую роль, чем в процессах расщепления. Но из этого не следует, что на любом этапе процесс распада может пойти в обратном направлении и превратиться в процесс синтеза. Большей частью синтез и распад отличаются одним или несколькими этапами. Вследствие этого процесс становится необратимым и обеспечивается большая надежность регулирования процессов синтеза и расщепления.
Направление реакции обычно зависит от соотношения исходных и конечных продуктов реакции в системе. В клетке многие процессы конденсирования молекул протекают с выделением воды. Вода в клетке содержится в избытке и в качестве конечного продукта реакции она должна бы препятствовать процессам синтеза. В действительности реакции, сопряженные с образованием ангидридных связей, идут по пути, исключающему образование воды. Примером служит образование сахарозы из глюкозы и фруктозы, которое принято выражать в виде уравнения:
На самом деле глюкоза или один из сахаров активируются, принимая остаток фосфата от АТФ: АТФ+глюкоза— →АДФ+глюкозо-1-фосфат. В активированном состоянии глюкозо-фосфат способен вступать в другую реакцию с фруктозой:
Вода в этой реакции не выделяется и, следовательно, не мешает ее течению.
На этом же принципе основано образование пептидных связей белков, эфирных связей в жирах и нуклеиновых кислотах, связей между моносахаридами в полисахаридах. Реакции протекают с потреблением энергии, заключенной в АТФ.
Этапы синтеза и расщепления контролируются специальными ферментами, причем каждый этап—своим ферментом. У гетеротрофных организмов образующиеся в процессе диссимиляции простые органические соединения используются при ассимиляции и таким образом энергетический и конструктивный обмены у них неразрывно связаны. У автотрофов процессы ассимиляции и диссимиляции также протекают параллельно друг другу, но в них используются различные вещества.