
- •2) Objects and methods of animal biotechnology
- •3) Totipotent, multipotent, pluripotent animal cells
- •4.Allophenic animals. Genetic chimers
- •5)The principles of genetic cloning
- •6.Allophenic animals. Genetic chimers
- •8) Methods for introducing foreign dna into animal cells
- •9)Cryopreservation of reproductive and germ cells of animals and humans
- •11)The principles and methods of plant cells cultivation in vitro
- •12. The types of medium. Physiological means of compounds medium (as an example you can use the composition of Murashige-Skug medium)
- •14)Differentiation and dedifferentiation in plant cell culture. The obtaining callus mass and cultivation of callus tissue .
- •15)The influence of phytohormons on morphogenesis and regeneration in plant cells culture
- •16.The main path of morphogenesis processes in plant cells culture
- •18.The growth stages in suspension culture
- •20) The factors influenced on microclonal propagation in plant cell culture.
- •21) What is Biotechnology? Various definitions of “Biotechnology”. History of Biotechnology
- •22.Microbial Biotechnology: fundamentals of applied microbiology
- •24.Sterilization in Biotechnology: Methods and principles
- •26) Somaclonal and gametoclonal variation in plant cells culture.
- •27) Artificial seeds". Embryo culture in vitro
- •28. Culture of apical meristem cells
- •29)Cell reconstruction. Theoretical means of cell reconstruction
- •30.Basics of phytopathology. The main diagnostics methods of plant diseases
- •32) Main objects of animal biotechnology:
- •33) Morphological and functional features of gametes - eggs and sperm
- •34Hormonal regulation of mammalian reproduction
- •35)The history of investigations of the genetic transformation of animal cells
- •36.The principles of genetic engineering in animal biotechnology
- •53)Genetic engineering. Methods of genetic transformation
- •54. Methods of receiving plant materials without viruses
- •56) The vector systems used in the genetic engineering
- •57) Methods of genetic engineering: agrobacterial genetic transformation
- •58)Methods of genetic engineering: bioballistics methods
- •60.Apply cell technology and cryopreservation technology for safe gene bank
- •62) Methods of producing chimeras
- •63) Collection and cultivation of oocytes in vivo and in vitro
- •64 Collection and cultivation of embryos in vivo and in vitro
- •66.Fertilization of oocytes in vitro, environment and conditions
- •68) Draw a diagram of the structure of plasmid pBr322
- •69) Draw a diagram of an experiment in genetic engineering (design recDna) and give a description of the main stages
- •70)Describe the calcium-phosphate method for introducing foreign dna into mammalian cells.
- •72 Methods of cryopreservation of sperm and oocytes of mammals
- •74) Modes of freezing and thawing of gametes and embryos
- •75) Methods of artificial fertilization: gamete insemination fallopian tube (gift), zygosity insemination fallopian tubes (zift).
- •76) Stem cells and prospects for their use in practice
- •78.Technical equipment of experiments on artificial insemination
- •80) Methods of animal cloning, reproductive and therapeutic cloning
- •81) Microorganisms in water and wastewater treatment
- •82 Microbial fermentations in food products
- •84.Bacterial examination of water and standard water analysis
- •86) Use of e.Coli for the biotechnological production
- •87) Microbes in milk and dairy products
- •88) What is the benefit of microorganisms in industry
- •90. Algae, their applications
8) Methods for introducing foreign dna into animal cells
Transgenics (also known as recombinant DNA) is the transferal of a specific gene from one organism to another. Gene splicing is used to introduce one or more genes of an organism into a second organism. A transgenic animal is created once the second organism incorporates the new DNA into its own genetic material.
In gene splicing, DNA cannot be transferred directly from its original organism, the donor, to the recipient organism, or the host. Instead, the donor DNA must be cut and pasted, or recombined, into a compatible fragment of DNA from a vector — an organism that can carry the donor DNA into the host. The host organism often is a rapidly multiplying microorganism such as a harmless bacterium, which serves as a factory where the recombined DNA can be duplicated in large quantities. The subsequently produced protein then can be removed from the host and used as a genetically engineered product in humans, other animals, plants, bacteria or viruses. The donor DNA can be introduced directly into an organism by techniques such as injection through the cell walls of plants or into the fertilized egg of an animal.
This transferring of genes alters the characteristics of the organism by changing its protein makeup. Proteins, including enzymes and hormones, perform many vital functions in organisms. Individual genes direct an animal’s characteristics through the production of proteins.
Two methods of producing transgenic animals are widely used:
transforming embryonic stem cells (ES cells) growing in tissue culture with the desired DNA;
injecting the desired gene into the pronucleus of a fertilized animal egg.
The
Embryonic Stem Cell Method (Method "1")
Embryonic stem cells (ES cells) are harvested from the inner cell mass (ICM) of mouse blastocysts. They can be grown in culture and retain their full potential to produce all the cells of the mature animal, including its gametes.
1. Make your DNA
Using recombinant DNA methods, build molecules of DNA containing
the gene you desire (e.g., the insulin gene);
vector DNA to enable the molecules to be inserted into host DNA molecules;
promoter and enhancer sequences to enable the gene to be expressed by host cells.
2. Transform ES cells in culture
Expose the cultured cells to the DNA so that some will incorporate it.
3. Select for successfully transformed cells.
4. Inject these cells into the inner cell mass (ICM) of mouse blastocysts.
5. Embryo transfer
Prepare a pseudopregnant animal (by mating a female animal with a vasectomized male). The stimulus of mating elicits the hormonal changes needed to make her uterus receptive.
Transfer the embryos into her uterus.
Hope that they implant successfully and develop into healthy pups (no more than one-third will).
6. Test her offspring
Remove a small piece of tissue from the tail and examine its DNA for the desired gene. No more than 10–20% will have it, and they will be heterozygous for the gene.
7. Establish a transgenic strain
Mate two heterozygous animals and screen their offspring for the 1 in 4 that will be homozygous for the transgene.
Mating these will found the transgenic strain.
The Pronucleus Method (Method "2")
1. Prepare your DNA as in Method 1
2. Transform fertilized eggs
Harvest freshly fertilized eggs before the sperm head has become a pronucleus.
Inject the male pronucleus with your DNA.
When the pronuclei have fused to form the diploid zygote nucleus, allow the zygote to divide by mitosis to form a 2-cell embryo.
3. Implant the embryos in a pseudopregnant foster mother and proceed as in Method 1.