Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
управление проектами.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.45 Mб
Скачать

1.3.Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:

ZBL= .

Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и, прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть, основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип).

Возвращаясь к нашей таблице 1 предположим, что q1=0.4, q2=0.2 и q3=0.4. Тогда согласно критерию Байеса-Лапласа таблицу 1 дополняем столбцом математических ожиданий и среди этих значений выбираем максимальное. Получим таблицу 13.

Таблица 13.

B

X

В1

В2

В3

аir

X1

1

10

1

2.8

2.8

X2

1.1

1.1

1.2

1.14

Оптимальным является решение X1.

Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования:

  • вероятности появления состояний Вj известны и не зависят от времени;

  • решение реализуется (теоретически) бесконечно много раз;

  • для малого числа реализаций решения допускается некоторый риск.

При достаточно большом количестве реализаций среднее значение постепенно стабилизируется. Поэтому при полной (бесконечной) реализации какой-либо риск исключён.

Исходная позиция применяющего – критерий оптимистичнее, чем в случае критерия Вальда, однако она предполагает более высокий уровень информированности и достаточно длинные реализации.

Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

Таблица 14. Оптимальные варианты, полученные с помощью различных критериев

Решение

Критерии

Стратегии

Вальда

maxmax

Гурвица,

g=0.6

Сэвиджа

Лапласа

Байеса-Лапласа

q1=0.4, q2=0.2, q3=0.4

X1

*

*

*

*

*

X2

*

Из таблицы 14 видно, что от выбранного критерия (а, в конечном счете - от допущений) зависит и выбор оптимального решения.

Выбор критерия (как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было получить хотя бы частичной информации относительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы, применяют метод Байеса-Лапласа, либо проводят эксперимент, позволяющий уточнить поведение природы.

Поскольку различные критерии связаны с различными условиями, в которых принимается решение, лучшее всего для сравнительной оценки рекомендации тех или иных критериев получить дополнительную информацию о самой ситуации. В частности, если принимаемое решение относится к сотням машин с одинаковыми параметрами, то рекомендуется применять критерий Байеса-Лапласа. Если же число машин не велико, лучше пользоваться критериями минимакса или Сэвиджа.