Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5-voprosy_i_otvety_k_zachyotu_2.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.07 Mб
Скачать

Тема 5: «Неопределённый интеграл».

  1. Определение неопределенного интеграла. Понятие первообразной функции

Определение 1. Функция F(x) называется первообразной для функции f(x) на промежутке Х, если для любого функция F(x) дифференцируема и выполняется равенство

Пример 1.Функция является первообразной для функции на бесконечном промежутке , так как при любых х выполнено равенство .

Пример 2.Функция - первообразная для функции на промежутке , так как в каждой точке этого интервала выполнено равенство .

Неопределённый интеграл

Определение 2:Совокупность всех первообразных функций для функции f(x) на промежутке Х называется неопределённым интегралом от функции f(x) на этом промежутке и обозначается символом

Геометрический смыслнеопределённого интеграла заключается в том, что все первообразные получаются сдвигом по оси (оу) на число С( как на рисунке 1).

В этом обозначении называется знаком интеграла,

f(x)подынтегральной функцией,

- подынтегральным выражением,

переменная х переменной интегрирования.

Операция нахождения первообразной по её производной называется интегрированием этой функции.

Физический смысл неопределённого интеграла заключатся в том, что зная скорость при помощи неопределённого интеграла можно найти расстояние

Пример 1. ; проверка:

Пример 2. ; проверка:

Пример 3. ; проверка:

  1. Свойства неопределенного интеграла.

1. и

2.

Следующие два свойства называются линейными свойствами неопределённого интеграла.

3. (Числовой коэффициент можно выносить за знак интеграла).

4. (Интеграл суммы функций равен сумме интегралов этих функций).

  1. Таблица основных формул интегрирования.

1.

2.

3.

4.

5. .

6.

7.

8.

9.

  1. Непосредственное интегрирование.

Вычисление интегралов с использованием основных свойств неопределённых интегралов и таблицы простейших интегралов называется непосредственным интегрированием.

Пример 1.

Пример 2.

  1. Метод подстановки при нахождении неопределенных интегралов.

Приём, где путём замены переменных неопределённый интеграл сводится к табличному, называется методом подстановки, или методом замены переменных.

Теорема 1:

Пусть функция определена и дифференцируема на некотором промежутке Т, а Х – множество значений этой функции, на котором определена функция . Тогда если функция имеет первообразную на множестве Х, то на множестве Т справедлива формула

(1)

Выражение (1) называется формулой замены переменной в неопределённом интеграле.

Пример 1.

Решение: Введём новую переменную t = x – 1. Тогда x = t + 1, dx = dt, и исходный интеграл преобразуется следующим образом:

Сделав обратную замену переменной, получаем окончательный ответ:

Пример 2.

Решение: Положим t = 2 – x , тогда x = 2 – t , dx=-dt . Отсюда по формуле получаем

Пример 3.

Решение: Положим тогда или и данный интеграл принимает вид табличного интеграла: