
ВОПРОСЫ ПО КС 1. Основные понятия компьютерных сетей (компьютерная сеть; модуль; понятие уровней; понятие интерфейса). 2. Проблемы физической передачи данных по линиям связи. 3. Проблемы объединения нескольких компьютеров. 4. Топология сети (полносвязная топология, ячеистая топология, общая шина, топология звезда, иерархическая звезда, кольцевая топология, смешанная топология). 5. Основные понятия модели ISO/OSI (физический уровень; канальный уровень; сетевой уровень; транспортный уровень; сеансовый уровень; представительный уровень; прикладной уровень). 6. Уровни вычислительных сетей (локальная сеть, городские сети, глобальные сети; отличия LAN от WAN; тенденция к сближению локальных и глобальных сетей; корпоративные сети). 7. Требования, предъявляемые к современным вычислительным сетям. 8. Линии связи (физическая среда передачи данных; типы линий связи; аналоговая модуляция; цифровое (импульсное) кодирование). 9. Основные характеристики линий связи (амплитудно-частотная характеристика; полоса пропускания; затухание; помехоустойчивость; перекрестные наводки на ближнем конце линии; пропускная способность; достоверность передачи данных; удельная стоимость). 10. Технологии различных уровней доступа к данным (технологии уровня доступа к физической среде; технологии уровня управления логическим каналом; стандарт технологии Ethernet). 11. Метод доступа CSMA/CD (этапы доступа к среде; возникновение коллизии).
В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).
Этот метод используется исключительно в сетях с общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (multiply-access,MA).
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю (рис. 3). Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры. Говорят, что при этом происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что приводит к искажению информации.
Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности немедленного обнаружения коллизии всеми станциями сети, ситуация коллизии усиливается посылкой в сеть станциями, начавшими передачу своих кадров, специальной последовательности битов, называемой jam-последовательностью.
После обнаружения коллизии передающая станция обязана прекратить передачу и ожидать в течение короткого случайного интервала времени, а затем может снова сделать попытку передачи кадра.
Из описания метода доступа видно, что он носит вероятностный характер, и вероятность успешного получения в свое распоряжение общей среды зависит от загруженности сети, то есть от интенсивности возникновения в станциях потребности передачи кадров. При разработке этого метода предполагалось, что скорость передачи данных в 10 Мб/с очень высока по сравнению с потребностями компьютеров во взаимном обмене данными, поэтому загрузка сети будет всегда небольшой. Это предположение остается часто справедливым и по сей день, однако уже появились приложения, работающие в реальном масштабе времени с мультимедийной информацией, для которых требуются гораздо более высокие скорости передачи данных. Поэтому наряду с классическим Ethernet'ом растет потребность и в новых высокоскоростных технологиях.
Метод CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети:
Между двумя последовательно передаваемыми по общей шине кадрами информации должна выдерживаться пауза в 9.6 мкс; эта пауза нужна для приведения в исходное состояние сетевых адаптеров узлов, а также для предотвращения монопольного захвата среды передачи данных одной станцией.
При обнаружении коллизии (условия ее обнаружения зависят от применяемой физической среды) станция выдает в среду специальную 32-х битную последовательность (jam-последовательность), усиливающую явление коллизии для более надежного распознавания ее всеми узлами сети.
После обнаружения коллизии каждый узел, который передавал кадр и столкнулся с коллизией, после некоторой задержки пытается повторно передать свой кадр. Узел делает максимально 16 попыток передачи этого кадра информации, после чего отказывается от его передачи. Величина задержки выбирается как равномерно распределенное случайное число из интервала, длина которого экспоненциально увеличивается с каждой попыткой. Такой алгоритм выбора величины задержки снижает вероятность коллизий и уменьшает интенсивность выдачи кадров в сеть при ее высокой загрузке.
Рис. 3. Схема возникновения коллизии в методе случайного доступа CSMA/CD (tp - задержка распространения сигнала между станциями A и B)
Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Если какая-либо передающая станция не распознает коллизию и решит, что кадр данных ею передан верно, то этот кадр данных будет утерян, так как информация кадра исказится из-за наложения сигналов при коллизии, он будет отбракован принимающей станцией (скорее всего из-за несовпадения контрольной суммы). Конечно, скорее всего искаженная информация будет повторно передана каким-либо протоколом верхнего уровня, например, транспортным или прикладным, работающим с установлением соединения и нумерацией своих сообщений. Но повторная передача сообщения протоколами верхних уровней произойдет через гораздо более длительный интервал времени (десятки секунд) по сравнению с микросекундными интервалами, которыми оперирует протокол Ethernet. Поэтому, если коллизии не будут надежно распознаваться узлами сети Ethernet, то это приведет к заметному снижению полезной пропускной способности данной сети.
Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. Именно для этого минимальная длина поля данных кадра должна быть не менее 46 байт (что вместе со служебными полями дает минимальную длину кадра в 72 байта или 576 бит). Длина кабельной системы выбирается таким образом, чтобы за время передачи кадра минимальной длины сигнал коллизии успел бы распространиться до самого дальнего узла сети. Поэтому для скорости передачи данных 10 Мб/с, используемой в стандартах Ethernet, максимальное расстояние между двумя любыми узлами сети не должно превышать 2500 метров.
С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например, Fast Ethernet, максимальная длина сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet она составляет 210 м, а в гигабитном Ethernet ограничена 25 метрами.
Независимо от реализации физической среды, все сети Ethernet должны удовлетворять двум ограничениям, связанным с методом доступа:
максимальное расстояние между двумя любыми узлами не должно превышать 2500 м,
в сети не должно быть более 1024 узлов.
12. Стандарт технологии TokenRing. Token Ring — технология локальной вычислительной сети (LAN) кольца с «маркёрным доступом» — протокол локальной сети, который находится на канальном уровне(DLL) модели OSI. Он использует специальный трёхбайтовый фрейм, названный маркёром, который перемещается вокруг кольца. Владение маркёром предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркёрным доступом перемещаются в цикле. Описание
Станции на локальной вычислительной сети (LAN) Token Ring логически организованы в звездообразную топологию с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркёра совместно использован ARCNET, маркёрной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.
13. Стандарт технологии FDDI. FDDI (Fiber Distributed Data Interface) — это стандарт, или, вернее, набор сетевых стандартов, ориентированных, прежде всего, на передачу данных по волоконно-оптическом белю со скоростью 100 Мбит/с. Подавляющая часть спецификаций стандарта FDDI была разработана проблемной группой ХЗТ9.5 (ANSI) во второй половине 80-х годов. FDDI стала вой ЛВС, использующей в качестве среды передачи оптическое волокно. Классический вариант сети FDDI строится на основе двух волоконно-оптических колец (двойного кольца), световой сигнал по которым распространяется в противоположных направлениях, рис, 6.1 а. Каждый узел подключаются на прием и передачу к обоим кольцам. Именно такая кольцевая физическая топология реализует основной способ повышения отказоустойчивости сети. В нормальном режиме работы данные идут от станции к станции только по одному из колец, которое называется первичным (primary). Для определенности направление движения данных в первичном кольце задано против часовой стрелки. Маршрут передачи данных отражает логическую топологию сети FDDI, которая всегда есть кольцо. Все станции, кроме передающей и принимающей, осуществляют ретрансляцию данных и являются сквозными. Вторичное кольцо (secondary) является резервным и в нормальном режиме работы сети для передачи данных не используется, хотя по нему и осуществляется непрерывный контроль за целостностью кольца. 14. Современные технологии доступа к сети. 15. Стандарт Gigabit Ethernet. Основные усилия рабочей группы IEEE 802.3z направлены на определение физических стандартов для Gigabit Ethernet. За основу она взяла стандарт ANSI X3T11 Fibre Channel, точнее, два его нижних подуровня: FC-0 (интерфейс и среда передачи) и FC-1 (кодирование и декодирование). Зависимая от физической среды спецификация Fibre Channel определяет в настоящее время скорость 1,062 гигабод в секунду. В Gigabit Ethernet она была увеличена до 1,25 гигабод в секунду. С учетом кодирования по схеме 8B/10B мы получаем скорость передачи данных в 1 Гбит/с.
Спецификация Gigabit Ethernet изначально предусматривала три среды передачи: одномодовый и многомодовый оптический кабель с длинноволновыми лазерами 1000BaseLX для длинных магистралей для зданий и комплексов зданий, многомодовый оптический кабель с коротковолновыми лазерами 1000BaseSX для недорогих коротких магистралей, симметричный экранированный короткий 150-омный медный кабель 1000BaseCX для межсоединения оборудования в аппаратных и серверных.
Однако в настоящее время четырехпарная 100-омная проводка Категории 5 является наиболее распространенной кабельной системой во всем мире. Учитывая это, бюро по стандартам IEEE удовлетворило в марте 1997 г. запрос на создание отдельного комитета по разработке стандарта физического уровня 1000BaseT для четырехпарных кабелей с неэкранированными витыми парами Категории 5 длиной 100 м (т. е. для сетей с диаметром 200 м, как и в 100BaseT). Эта группа получила наименование 803.2ab. Данный стандарт будет опираться на иную схему кодирования, нежели Fibre Channel, и, вероятнее всего, появится на год позже, чем остальные три стандарта.
ТАБЛИЦА 1 - СТАНДАРТЫ И ПРИЛОЖЕНИЯ |
|||
Интерфейс физического уровня |
Тип кабеля |
Максимальная протяженность (в скобках диаметр волокна) |
Типичные приложения |
1000BaseSX |
Многомодовый кабель с коротковолновым лазером (850 нм) |
220 м (62,5 мкм); 500 м (50 мкм) |
Короткие магистрали |
1000BaseLX |
Многомодовый и одномодовый кабель с длинноволновым лазером (1300 нм) |
Многомодовый: 550 м (62,5 мкм);550 м (50 мкм) Одномодовый: 5 км (9 мкм) |
Короткие магистрали Территориальные магистрали |
1000BaseCX |
Короткий медный кабель (STP/коаксиал) |
25 м |
Межсоединение оборудования в монтажном шкафу |
1000BaseT |
4-парный неэкранированный Категории 5 |
100 м |
Горизонтальные трассы |
Все четыре стандарта отличаются покрываемыми расстояниями и планируемыми применениями
16. Структурированная кабельная система. Структурированная кабельная система Компания «Кибернетический мир» предлагает свои услуги по монтажу кабельных систем для широкого спектра использования: от малых офисов до информационно-вычислительных комплексов и корпоративных коммуникационных систем. В профессиональную компетенцию компании входит оснащение офисных и производственных зданий надежными сертифицированными кабельными системами, построение локальной компьютерной сети, офисной системы связи, распределенных мультисервисных сетей, охранных систем безопасности и видео-наблюдения. Применяя в наших проектах наиболее современные решения для кабельных и беспроводных сетей, мы реализуем новые технологии передачи данных, внедряем актуальные сетевые и коммуникационные стандарты, увеличиваем потенциал информационных систем. Мы создаем разветвленные, иерархические кабельные системы, разделенные на структурные подсистемы для одного или нескольких зданий. Элементы кабельной сети интегрируются в единую универсальную и отказоустойчивую систему. Структурированная кабельная система (СКС) представляет собой иерархическую кабельную систему здания или группы зданий, разделенную на структурные подсистемы. СКС состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъемов, модульных гнезд, информационных розеток и вспомогательного оборудования. Все перечисленные элементы интегрируются в единую систему и эксплуатируются согласно определенным правилам. В основу концепции структурированных кабельных систем положена возможность реализации следующих основных принципов: - Универсальность. Для передачи данных в ЛВС, организации локальной телефонной сети, передачи видеоинформации или сигналов от датчиков пожарной безопасности или охранных систем используется единая кабельная система. При продуманной интеграции в инфраструктуру здания структурированные системы позволяют автоматизировать многие процессы по контролю, мониторингу и управлению хозяйственными службами и системами жизнеобеспечения. - Гибкость. Структурированные системы позволяют быстро и легко изменять конфигурацию кабельной системы и управлению перемещениями внутри здания и между зданиями. Для этого администратору сети достаточно перекоммутировать контакты на кроссировочных панелях. Это позволяет обеспечить гибкое изменение рабочих мест сотрудников и полное изменение конфигурации системы, включая замену и добавление оборудования, расширение системы. - Устойчивость. Тщательно спланированная СКС устойчива к внештатным ситуациям и гарантирует высокую надежность и защиту данных в течение многих лет. 17. Иерархия структурированной кабельной системы. Иерархия в кабельной системе
Структурированная кабельная система (Structured Cabling System, SCS) - это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.
Структурированная кабельная система представляет своего рода «конструктор», с помощью которого проектировщик сети строит нужную ему конфигурацию из стандартных кабелей, соединенных стандартными разъемами и коммутируемых на стандартных кроссовых панелях. При необходимости конфигурацию связей можно легко изменить - добавить компьютер, сегмент, коммутатор, изъять ненужное оборудование, а также поменять соединения между компьютерами и концентраторами.
При построении структурированной кабельной системы подразумевается, что каждое рабочее место на предприятии должно быть оснащено розетками для подключения телефона и компьютера, даже если в данный момент этого не требуется. То есть хорошая структурированная кабельная система строится избыточной, В будущем это может сэкономить средства, так как изменения в подключении новых устройств можно производить за счет перекоммутации уже проложенных кабелей.
Структурированная кабельная система планируется и строится иерархически, с главной магистралью и многочисленными ответвлениями от нее (рис. 4.1).
Рис. 4.1. Иерархия структурированной кабельной системы
18. Преимущества структурированной кабельной системы. Преимущества структурированной кабельной системы • кабельная система решает задачи передачи данных, видеосигналов и голоса • добавление модулей и расширение без глобальной реконструкции всей сети • совместимость с оборудованием других производителей • поддержка существующих сетевых протоколов и стандартов • удаленное управление, что позволяет сократить расходы на персонал • гибридные системы, то есть возможность объединения в общей проводке волоконно-оптического и медного кабеля. +19. Сетевые адаптеры. Сетевой адаптер (Network Interface Card, NIC) - это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы и распределение функций между сетевым адаптером и драйвером может изменяться от реализации к реализации.
В первых локальных сетях сетевой адаптер с сегментом коаксиального кабеля представлял собой весь спектр коммуникационного оборудования, с помощью которого организовывалось взаимодействие компьютеров. Сетевой адаптер компьютера-отправи-теля непосредственно по кабелю взаимодействовал с сетевым адаптером компьютера-получателя. В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.
20. Концентраторы. Сетевой концентратор или хаб (от англ. hub — центр) — устройство для объединения компьютеров в сетьEthernet c применением кабельной инфраструктуры типа витая пара. В настоящее время вытеснены сетевыми коммутаторами.
Сетевые концентраторы также могли иметь разъёмы для подключения к существующим сетям на базе толстого или тонкого коаксиального кабеля.
Принцип работы [править]
Концентратор работает на 1 (первом) — физическом уровне сетевой модели OSI, ретранслируя входящий сигнал с одного из портов в сигнал на все остальные (подключённые) порты, реализуя, таким образом, свойственную Ethernet топологию общая шина, c разделением пропускной способности сети между всеми устройствами и работой в режиме полудуплекса. Коллизии (то есть попытка двух и более устройств начать передачу одновременно) обрабатываются аналогично сети Ethernet на других носителях — устройства самостоятельно прекращают передачу и возобновляют попытку через случайный промежуток времени, говоря современным языком, концентратор объединяет устройства в одном домене коллизий.
Сетевой концентратор также обеспечивает бесперебойную работу сети при отключении устройства от одного из портов или повреждении кабеля, в отличие, например, от сети на коаксиальном кабеле, которая в таком случае прекращает работу целиком.
21. Мост и коммутатор. В соответствии с базовой эталонной моделью взаимодействия открытых систем мост описывается протоколами физического и канального уровней, над которыми располагаются канальные процессы. Мост опирается на пару связываемых им физических средств соединения, которые в этой модели представляют физические каналы. Мост преобразует физический (1A, 1B) и канальный (2A, 2B) уровни различных типов (рис. 6.3). Что касается канального процесса, то он объединяет разнотипные каналы передачи данных в один общий.
Мост (bridge), а также его быстродействующий аналог – коммутатор (switching hub), делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста/коммутатора. При поступлении кадра на какой-либо из портов мост/коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.
Мосты могут соединять сегменты, использующие разные типы носителей, например 10BaseT (витая пара) и 10Base2 (тонкий коаксиальный кабель). Они могут соединять сети с разными методами доступа к каналу, например сети Ethernet (метод доступа CSMA/CD) и Token Ring (метод доступа TPMA).
Коммутатор (switch) – устройство, осуществляющее выбор одного из возможных вариантов направления передачи данных.
В коммуникационной сети коммутатор является ретрансляционной системой (система, предназначенная для передачи данных или преобразования протоколов), обладающей свойством прозрачности (т.е. коммутация осуществляется здесь без какой-либо обработки данных). Коммутатор не имеет буферов и не может накапливать данные. Поэтому при использовании коммутатора скорости передачи сигналов в соединяемых каналах передачи данных должны быть одинаковыми. Канальные процессы, реализуемые коммутатором, выполняются специальными интегральными схемами. В отличие от других видов ретрансляционных систем, здесь, как правило, не используется программное обеспечение.
Вначале коммутаторы использовались лишь в территориальных сетях. Затем они появились и в локальных сетях, например, частные учрежденческие коммутаторы. Позже появились коммутируемые локальные сети. Их ядром стали коммутаторы локальных сетей.
22. Семейство протоколов TCP/IP (многоуровневая структура стека TCP/IP; протокол межсетевого взаимодействия IP; соответствие уровней стека TCP/IP семиуровневой модели OSI; единицы данных, используемые в TCP/IP). Глобальная сеть Интернет – это всемирное объединение различных региональных и корпоративных компьютерных сетей, образующих единое информационное пространство благодаря использованию общих стандартных протоколов передачи данных. Основным стандартным протоколом в Интернет является TCP/IP (Transmission Control Protocol – Internet Protocol). Выбор протокола TCP/IP в качестве стандартного был обусловлен исторически. В 70-х годах в сети ARPANET Министерства обороны США были впервые использованы коммуникационные протоколы, положенные в основу Интернет. Построенная в то время сеть была очень надежна и использовала протоколы семейства TCP/IP. В 80-е годы шел процесс объединения сетей, использующих TCP/IP, и происходило становление сети Интернет, важную роль в этом сыграл Национальный научный фонд США. В 90-х годах Интернет переживает бурный рост: в геометрической прогрессии увеличивается число подключенных к сети компьютеров, сетевых информационных систем и количество доступных документов, постоянно возрастает объем передаваемой информации. TCP/IP – название семейства протоколов передачи данных в сети. Протокол – набор правил и команд (язык) с помощью которых происходит передача данных в сети. Протокол TCP/IP – сетевой протокол, обеспечивающий коммуникации по объединенным сетям, составленным из компьютеров с различной аппаратной архитектурой, работающих под управлением различных операционных систем. TCP/IP может использоваться для поддержки коммуникаций с системами Windows NT, с устройствами, использующими другие сетевые продукты Microsoft, а также с системами, отличными от Microsoft, например, UNIX-системами. Семейство протоколов TCP/IP является стандартным набором сетевых протоколов или правил, управляющих способом передачи данных между компьютерами в сети. TCP/IP используется для соединения с Интернет, объединенной сетью в масштабах всего мира, охватывающей множество университетов, исследовательских лабораторий, организаций, корпораций, а также частные корпоративные сети, объединяющих несколько локальных сетей. Microsoft TCP/IP обеспечивает все элементы, необходимые для реализации протоколов при организации сетевого взаимодействия. В состав Microsoft TCP/IP входят: - протокол управления передачей (Transmission Control Protocol, TCP); - межсетевой протокол (Internet Protocol, IP); - простой протокол передачи почты (Simple Mail Transfer Protocol, SMTP); - протокол датаграмм пользователя (User Datagram Protocol, UDP); - протокол разрешения адреса (Address Resolution Protocol, ARP), определяет уникальные числовые адреса машин в сети; - межсетевой протокол управления сообщениями (Internet Control Messages Protocol, ICMP). Это множество межсетевых протоколов предоставляет набор стандартов, определяющих, каким образом взаимодействуют компьютеры, и как можно осуществить объединение сетей. Обеспечивается также поддержка PPP и SLIP, протоколов, используемых для доступа по коммутируемым линиям к сетям TCP/IP, включая Internet. Каждый компьютер, подключенный к сети Интернет, имеет уникальный числовой идентификатор – IP-адрес длиной в 32 бита из четырех частей по 8 бит, например 194.85.160.21. Для удобства чтения каждый байт IP-адреса при записи отделяется точкой. Используется и другая форма идентификации компьютеров в сети – форма доменных имен. Между IP-адресом компьютера и его доменным именем устанавливается соответствие. IP-адрес также называют сетевым адресом компьютера, а доменное имя – сетевым именем компьютера. Например, компьютер с указанным выше адресом называется StarLab.ifmo.ru.