Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
alfavit.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
5 Mб
Скачать

Метчики, их виды и назначение, условия работы и элементы конструкции и геометрии.

Метчики широко используются в машиностроении для нарезания резьбы в отверстиях заготовок и весьма разнообразны по конструкциям и геометрическим параметрам.

Метчик - это винт, превращенный в инструмент путем прорезания стружечных канавок и создания на режущих зубьях передних, задних и других углов. Для крепления на станке или в воротке он снабжен хвосто­виком. Режущая часть метчика изготавливается чаще всего из быстроре­жущей стали, реже из твердого сплава.

Условия резания при снятии стружки метчиком очень тяжелые из-за несвободного резания, больших сил резания и трения, а также затруднен­ных условий удаления стружки. Кроме того, метчики имеют пониженную прочность из-за ослабленного поперечного сечения. Особенно отрица­тельно это сказывается при нарезании резьбы в вязких материалах мет­чиками малых диаметров, которые часто выходят из строя из-за поломок, вызванных пакетированием стружки.

Достоинствами метчиков являются: простота и технологичность конструкции, возможность нарезания резьбы за счет самоподачи, высо­кая точность резьбы, определяемая точностью изготовления метчиков.

По конструкции и применению метчики делят на следующие типы:

  1. ручные (слесарные) - с ручным приводом, изготавливаются ком­плектами из двух или трех номеров;

  2. машинно-ручные одинарные или в комплекте из двух номеров - с ручным или станочным приводом;

  3. машинные одинарные - со станочным приводом;

  4. гаечные - для нарезания резьбы в гайках на специальных станках;

  5. плашечные и маточные - для нарезания и, соответственно, ка­либрования резьбы в резьбонарезных плашках;

  6. специальные - для нарезания резьб различных профилей: трапе­цеидальных, круглых, упорных и т.д., а также сборные регулируемые, метчики-протяжки, конические метчики и др.

Конструктивные элементы метчиков и геометрические пара­метры режущей части. Несмотря на большое разнообразие типов мет­чиков, они имеют общие основные части, конструктивные элементы и геометрию режущей части, которые рассмотрим ниже на примере метчи­ков для нарезания остроугольной крепежной резьбы, получивших наи­большее распространение на практике.

Основными частями метчика (рис. 9.13) являются: режущая (забор­ная) и калибрующая части, стружечные канавки, число перьев и зубьев, хвостовик с элементами крепления. К геометрическим параметрам отно­сятся: ф - угол заборного конуса, играющий роль угла в плане; у и а - передний и задний углы на режущих кромках; ш - угол наклона винтовых стружечных канавок; X - осевой угол подточки передней поверхности.

Режущая часть метчика выполняет основную работу по срезанию припуска, формированию профиля нарезаемой резьбы и удалению стружки из зоны резания. Она определяет точность резьбы и стойкость метчиков.

Для распределения припуска между зубьями режущая часть выпол­няется на поверхности усеченного конуса, называемого заборным, с уг­лом ф наклона его образующей к оси. Если режущая часть получается путем срезания на конус резьбы исходного винта, то высота зубьев на нем переменная.

При этом зубья на длине режущей части 1\ срезают припуск во впа­дине резьбы детали по генераторной схеме, т.е. каждый режущий зуб участвует в формировании профиля резьбы (рис. 9.14). Использование такой схемы значительно упрощает технологии изготовления и заточки метчиков.

Известны и другие предложения по оформлению режущей части метчика, например по использованию профильной схемы резания, когда на заборном конусе нарезаются зубья с полным профилем резьбы или в качестве образующей заборной части берется не прямая, а дуга окружно­сти и др. Хотя эти варианты и позволяют повысить стойкость метчиков и точность нарезаемой резьбы, но они существенно увеличивают трудоем­кость изготовления метчиков и поэтому не нашли широкого практиче­ского применения. При генераторной схеме резания главными режущими кромками являются вершинные кромки переменной ширины, а боковые кромки зубьев - вспомогательными.

Число режущих зубьев метчика

z = zKn,

где zK - число стружечных канавок; п - число режущих зубьев.

Место и значение обработки резанием среди других методов размерного формообразования деталей. Сущность процесса заключается в том, что с помощью режущего инструмента с заготовки удаляют в определенных местах так называемый припуск, последовательно приближая ее форму и размеры к требуемым, превращая ее в готовое изделие. Обработку резанием можно производить вручную и с помощью станков. При ручной обработке в качестве инструмента используют зубчатую пилу (ножовку), стамеску и долото, топор, рубанок и фуганок, резец, сверло, рашпиль и напильник, зубило, надфиль, метчик и плашку, абразивный брусок или наждачную бумагу; при станочной обработке - резец, фрезу, ножовку, ленточную или дисковую зубчатую пилу, сверло, протяжку и долбяк, метчик и плашку, абразивный круг и др.

Преимуществом обработки материалов резанием является возможность получения геометрической формы точных размеров с низкой шероховатостью поверхности при различном типе производства. Резанием обрабатывают различные материалы, свойства которых лежат в широком диапазоне: это пластичные и хрупкие материалы, металлические и неметаллические, природные и искусственные, твердые и мягкие. В подавляющем большинстве случаев, чтобы обеспечить требуемую точность размеров и формы, расположения поверхностей детали, необходимо на заключительной стадии изготовления деталей применять обработку резанием. Выполненные при обработке размеры, форма и расположение поверхностей и их шероховатость определяют фактические зазоры и натяги в соединениях деталей машин и механизмов, влияющие на их качество, технические и экономические показатели продукции.

Методика расчета режимов резания при сверлении.

Режимом резания называется совокупность элементов, определяющих условия протекания процесса резания.

К элементам режима резания относятся – глубина резания, подача, период стойкости режущего инструмента, скорость резания, частота вращения шпинделя, сила и мощность резания.

1. Глубина резания t, мм. При сверлении глубина резания t = 0,5 D, D – диаметр отверстия после обработки. 2. Подача s, мм/об. При сверлении отверстий без ограничивающихся факторов выбираем максимально допустимую по прочности сверла подачу.

3. Скорость резания vр, м/мин. Скорость резания при сверлении Значения коэффициентов Сv и показателей степени m, x, y, q приведены для сверления в специальных таблицах. Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания, Кv = Кмv Киv Кιv, где Кмv - коэффициент на обрабатываемый Киv – коэффициент на инструментальный материал Кιv, - коэффициент учитывающий глубину сверления

4. Частоту вращения n, об/мин, рассчитывают по формуле об/мин, где vp – скорость резания, м/мин; D – диаметр отверстия, мм. После расчета частоты вращения принимают ее ближайшее меньшее значение по паспорту станка (приложение 3). Затем уточняют скорость резания по принятому значению nпр. 5. Крутящий момент Mкр, Н·м, и осевую силу Ро, Н, рассчитывают по формулам: при сверлении Мкр = 10 СмDqsyКр ; Р0 = 10 Ср DqsyКр ; Значения См и Ср и показателей степени q, x, y приведены в таблицах. Коэффициент Kp, учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением Кр = Кмр. 6. Мощность резания Ne, кВт, определяют по формуле: где nпр - частота вращения инструмента или заготовки, об/мин, Мощность резания не должна превышать эффективную мощность главного привода станка Nе<Nэ ( , где Nдв - мощность двигателя, - кпд станка). Если условие не выполняется и NеNэ, снижают скорость резания. Определяют коэффициент перегрузки рассчитывают новое меньшее значение скорости резания . Также проверяют подачу станка и по допустимому усилию , где Рост – осевая сила станка

7. Основное время То, мин, рассчитывают по формуле , где L – длина рабочего хода инструмента, мм; Длина рабочего хода, мм, равна L=l+l1+l2, где l – длина обрабатываемой поверхности, мм; l1 и l2 – величины врезания и перебега инструмента, мм

Методика расчета режимов резания при точении.

Назначение режимов резания основывается на определении глубины, подачи и скорости резания, при которых будет обеспечена наиболее экономичная и производительная обработка поверхности (при условии выполнения заданных технических требований) по точности и шероховатости обработанной поверхности..

1. Выбирается марка инструментального материала и геометрические параметры режущей части инструмента. 2. Выбирается глубина резания. Глубина резания в основном определяется припуском на обработку, который по возможности стремятся удалить за один проход.

t=(D-d)/2,

3. Назначается подача. При черновой обработке подача назначается с учетом следующих факторов: размеров державки резца, диаметра детали, глубины резания и марки обрабатываемого материала. Для чистовой (и получистовой) обработки подача выбирается в зависимости от при вершине резца, резания и обрабатываемого материала, из всех подач выбирается минимальная подача , которая корректируется по станку. 4. Выбирается скорость резания по таблицам, подсчитываются обороты и корректируются по станку. Скорость резания выбирается в соответствии с определенными значениями глубины резания, подачи и стойкости режущего инструмента, геометрических параметров режущей части. Скорость резания назначается по соответствующим нормативам режимов резания или подсчитывается по эмпирическим формулам. v=πDn/1000 м/мин

5. Проверяется выбранный режим резания по прочности механизма подачи станка и по прочности пластинки твердого сплава. При этом должно выполнятся неравенство . 6. Проверяется выбранный режим резания по мощности или двойному крутящему моменту , причем . 7. Подсчитывается ,

После выбора всех трех элементов режима резания проверяется их соответствие мощности станка по формуле

N ст = (Pz * v)/(60*102*η) квт,

где Рz — сила резания в н (кГ); v— скорость резания в м/мин; η — коэффициент полезного действия станка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]