
- •1). Интерференция световых волн. Когерентность световых волн. Условие максимума и минимума для интерференции света. Оптическая длина пути.
- •5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •7). Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •8). Дифракция Френеля на круглом отверстии:
- •9). Дифракция Фраунгофера на одной щели.
- •10). Дифракционная решетка. Дифракционная картина от решетки. Главные максимумы и минимумы.
- •11). Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
- •13). Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •14). Поляризация света. Естественный и поляризованный свет. Частичная и полная плоская поляризация света.
- •15). Прохождение света через поляризатор и анализатор. Закон Малюса.
- •16). Поляризация света при отражении. Закон Брюстера.
- •17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
- •18). Призма Николя. Оптический дихроизм. Поляризационные призмы и поляроиды.
- •19). Вращение плоскости поляризации света. Оптически активные вещества.
- •20). Магнитное вращение плоскости поляризации
- •21). Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •22). Поглощение света при прохождении через вещество. Механизм поглощения.
- •23). Рассеяние света в веществе.
- •24). Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •25). Эффект Вавилова- Черенкова.
- •26). Тепловое излучение. Основные характеристики теплового излучения. Равновесный характер теплового излучения.
- •27). Связь между лучеиспускательной и поглащательной способностями тел. Закон Кирхгофа. Абсолютно-чёрное тело.
- •28). Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •29). Теория Релея и Джинса. Затруднения классической теории излучения.
- •31). Внешний фотоэффект как квантовое явление и его законы. Применение фотоэффекта.
- •32). Фотон и его свойства. Энергия,импульс,масса и скорость фотона.
- •33). Давление света. Опыты Лебедева.
- •34). Эффект Комптона и его теория.
- •35). Корпускулярно-волновой дуализм. Соотношение между волновыми и корпускулярными свойствами света.
- •36). Спектральные серии в спектре излучения атома водорода.
- •37). Опыты Резерфорда. Планетарная модель атома. Её устойчивость.
- •38). Постулаты Бора. Условие квантования орбит.
- •39). Теория Бора для водородоподобного атома, её ограниченность.
- •40). Гипотеза де Бройля,её опытное подтверждение. Волновые свойства микрочастиц.
- •41). Соотношение неопределённостей как следствие корпускулярно-волновых свойств вещества.
- •42). Волновая функция. Её статистический смысл. Свойства волновой функции.
- •43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
- •45). Частица в одномерной потенциальной яме. Квантование энергии.
- •46). Туннельный эффект.
- •47). Уравнение Шредингера для атома водорода и его решение. 48). Квантовые числа.Вырожденные состояния.Обозначения состояний атома.Правила отбора.
- •49). Мультиплетность спектральных линий. Спин электрона. Спиновое квантовое число.
- •50). Принцип Паули. Распределение электронов в атоме по состояниям.
- •51). Периодическая система элементов д.И. Менделеева. Принципы её построения.
- •52. Спонтанное и вынужденное излучения атомов,их особенности. Инверсные состояния атомов.
- •53). Мазеры,лазеры,принцип их действия.
- •54 Вопрос! а) Размер, состав и заряд атомного ядра. Массовое и зарядовое числа. Изотопы
- •Б) дефект массы и энергия связи ядра
- •В) Закономерности a-распада, б-распад ниже
- •В) ядерные реакции и их основные типы
- •Г) реакция деления ядра
- •Д) цепная реакция деления
12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
Пространственной,
или трехмерной, дифракционной решеткой
называется такая оптически неоднородная
среда, в которой неоднородности
периодически повторяются при изменении
всех трех пространственных координат.
Всякий монокристалл состоит из
упорядоченно расположенных атомов
(ионов), образующих пространственную
трехмерную решетку (естественная
пространственная решетка). Для
рентгеновских лучей кристаллы твердых
тел являются идеальными дифракционными
решетками. русский физик Г.В. Вульф и
английские ученые отец и сын Генри и
Лоренс Брэгги, независимо друг от друга,
предложили простой метод расчета
дифракции рентгеновских лучей в
кристаллах. Они полагали, что дифракцию
рентгеновских лучей можно рассматривать
как результат отражения рентгеновских
лучей от плоскостей кристалла. Это
отражение, в отличие от обычного,
происходит лишь при таких условиях
падения лучей на кристалл, которые
соответствуют максимуму интерференции
для лучей, отраженных от разных плоскостей.
Поскольку рентгеновские лучи обладают высокой проникающей способностью, отраженная их часть составляет ничтожную долю лучей, прошедших в кристалл. Однако при условии интерференционного максимума лучей, отраженных от разных плоскостей кристалла, можно добиться их значительного усиления.
Разобьем кристалл на ряд параллельных плоскостей, проходящих через узлы кристаллической решетки и отстоящих друг от друга на расстояние d (рис. 3.8). Пусть на кристалл падает плоская монохроматическая волна рентгеновского излучения под углом скольжения θ (угол между направлением падающего луча и кристаллографической плоскостью). Рассмотрим лучи 1’ и 2’, отразившиеся от атомов А и В двух параллельных плоскостей I и II соответственно. Абсолютный показатель преломления любых сред для рентгеновских лучей близок к единице, поэтому отраженные лучи 1’ и 2’ по закону отражения выйдут из кристалла под тем же углом θ к плоскостям I и II. Лучи 1’ и 2’ когерентны и будут интерферировать между собой, подобно лучам, идущим от соседних щелей дифракционной решетки. Для определения разности хода лучей 1’ и 2’ из точки А опустим перпендикуляры на лучи 2 и 2’ (на рис. 3.8 это пунктирные линии). Искомая разность хода Δ = 2 dsinθ. Лучи будут усиливать друг друга при 2 dsinθ = = mλ, где m = 1,2…. – порядок дифракционного максимума. Данное соотношение называется формулой Вульфа-Брэгга. Если известна длина волны рентгеновских лучей, то по виду дифракционной картины можно определить структуру кристалла. На этом основан метод изучения структуры вещества, получивший название рентгеноструктурного анализа.
Интерференционные максимумы должны удовлетворять условию Вульфа–Брэггов:
,
(m = 1, 2, 3, ... .).(9.5.1)Из формулы (9.5.1) видно,
что дифракция будет наблюдаться лишь
при
.
Т. е. при условии
будут отсутствовать дифракционные
максимумы. Поэтому условие
называют
условием оптической однородности
кристалла.Из (9.5.1) следует, что наблюдение
дифракционных максим+умов возможно
только при определенных соотношениях
между λ и θ. Этот результат лежит в основе
спектрального анализа рентгеновского
излучения, так как длину волны определяют
по известным d, m и измеренному на опыте
углу.