
- •1). Интерференция световых волн. Когерентность световых волн. Условие максимума и минимума для интерференции света. Оптическая длина пути.
- •5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •7). Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •8). Дифракция Френеля на круглом отверстии:
- •9). Дифракция Фраунгофера на одной щели.
- •10). Дифракционная решетка. Дифракционная картина от решетки. Главные максимумы и минимумы.
- •11). Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
- •13). Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •14). Поляризация света. Естественный и поляризованный свет. Частичная и полная плоская поляризация света.
- •15). Прохождение света через поляризатор и анализатор. Закон Малюса.
- •16). Поляризация света при отражении. Закон Брюстера.
- •17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
- •18). Призма Николя. Оптический дихроизм. Поляризационные призмы и поляроиды.
- •19). Вращение плоскости поляризации света. Оптически активные вещества.
- •20). Магнитное вращение плоскости поляризации
- •21). Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •22). Поглощение света при прохождении через вещество. Механизм поглощения.
- •23). Рассеяние света в веществе.
- •24). Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •25). Эффект Вавилова- Черенкова.
- •26). Тепловое излучение. Основные характеристики теплового излучения. Равновесный характер теплового излучения.
- •27). Связь между лучеиспускательной и поглащательной способностями тел. Закон Кирхгофа. Абсолютно-чёрное тело.
- •28). Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •29). Теория Релея и Джинса. Затруднения классической теории излучения.
- •31). Внешний фотоэффект как квантовое явление и его законы. Применение фотоэффекта.
- •32). Фотон и его свойства. Энергия,импульс,масса и скорость фотона.
- •33). Давление света. Опыты Лебедева.
- •34). Эффект Комптона и его теория.
- •35). Корпускулярно-волновой дуализм. Соотношение между волновыми и корпускулярными свойствами света.
- •36). Спектральные серии в спектре излучения атома водорода.
- •37). Опыты Резерфорда. Планетарная модель атома. Её устойчивость.
- •38). Постулаты Бора. Условие квантования орбит.
- •39). Теория Бора для водородоподобного атома, её ограниченность.
- •40). Гипотеза де Бройля,её опытное подтверждение. Волновые свойства микрочастиц.
- •41). Соотношение неопределённостей как следствие корпускулярно-волновых свойств вещества.
- •42). Волновая функция. Её статистический смысл. Свойства волновой функции.
- •43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
- •45). Частица в одномерной потенциальной яме. Квантование энергии.
- •46). Туннельный эффект.
- •47). Уравнение Шредингера для атома водорода и его решение. 48). Квантовые числа.Вырожденные состояния.Обозначения состояний атома.Правила отбора.
- •49). Мультиплетность спектральных линий. Спин электрона. Спиновое квантовое число.
- •50). Принцип Паули. Распределение электронов в атоме по состояниям.
- •51). Периодическая система элементов д.И. Менделеева. Принципы её построения.
- •52. Спонтанное и вынужденное излучения атомов,их особенности. Инверсные состояния атомов.
- •53). Мазеры,лазеры,принцип их действия.
- •54 Вопрос! а) Размер, состав и заряд атомного ядра. Массовое и зарядовое числа. Изотопы
- •Б) дефект массы и энергия связи ядра
- •В) Закономерности a-распада, б-распад ниже
- •В) ядерные реакции и их основные типы
- •Г) реакция деления ядра
- •Д) цепная реакция деления
46). Туннельный эффект.
Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 298, а) для одномерного (по оси х)движения частицы. Для потенциального барьера прямоугольной формы высоты U и ширины l можем записать
(
для
области 1),
(для области 2),
(для области 3).
При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е > U), либо отразится от него (при Е < U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же, даже при E > U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E < U имеется также отличная от нуля вероятность, что частица окажется в области х >l, т. е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микро частицы при условиях данной задачи.
Рис. 298
Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид
(221.1)
Общие решения этих дифференциальных уравнений:
(
для
области 1); (221.2)
(для области 2);
(для области 3). (221.3)
В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид
(221.4)
В этом выражении первый член представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй - волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).
Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент В3 в формуле (221.3) следует принять равным нулю.
В области 2 решение зависит от соотношений Е > U или Е < U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е < U законы классической физики однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q = ib - мнимое число, где
Учитывая значение q и B3=0, получим решения уравнения Шредингера для трех областей в следующем виде:
(для
области 3). (221.5)
В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда bl >>1, B2 » 0 .
Качественный характер функций y1(x), y2(x), y3(x) иллюстрируется на рис. 298, б, откуда следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины.
Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может «пройти» сквозь потенциальный барьер.
С классической точки зрения прохождение частицы сквозь потенциальный барьер при Е < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса Dр на отрезке Dx = l составляет Dр > h/l. Связанная с. этим разбросом в значениях импульса кинетическая энергия (Dр)2/(2m) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной.