
- •1). Интерференция световых волн. Когерентность световых волн. Условие максимума и минимума для интерференции света. Оптическая длина пути.
- •5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •7). Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •8). Дифракция Френеля на круглом отверстии:
- •9). Дифракция Фраунгофера на одной щели.
- •10). Дифракционная решетка. Дифракционная картина от решетки. Главные максимумы и минимумы.
- •11). Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
- •13). Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •14). Поляризация света. Естественный и поляризованный свет. Частичная и полная плоская поляризация света.
- •15). Прохождение света через поляризатор и анализатор. Закон Малюса.
- •16). Поляризация света при отражении. Закон Брюстера.
- •17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
- •18). Призма Николя. Оптический дихроизм. Поляризационные призмы и поляроиды.
- •19). Вращение плоскости поляризации света. Оптически активные вещества.
- •20). Магнитное вращение плоскости поляризации
- •21). Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •22). Поглощение света при прохождении через вещество. Механизм поглощения.
- •23). Рассеяние света в веществе.
- •24). Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •25). Эффект Вавилова- Черенкова.
- •26). Тепловое излучение. Основные характеристики теплового излучения. Равновесный характер теплового излучения.
- •27). Связь между лучеиспускательной и поглащательной способностями тел. Закон Кирхгофа. Абсолютно-чёрное тело.
- •28). Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •29). Теория Релея и Джинса. Затруднения классической теории излучения.
- •31). Внешний фотоэффект как квантовое явление и его законы. Применение фотоэффекта.
- •32). Фотон и его свойства. Энергия,импульс,масса и скорость фотона.
- •33). Давление света. Опыты Лебедева.
- •34). Эффект Комптона и его теория.
- •35). Корпускулярно-волновой дуализм. Соотношение между волновыми и корпускулярными свойствами света.
- •36). Спектральные серии в спектре излучения атома водорода.
- •37). Опыты Резерфорда. Планетарная модель атома. Её устойчивость.
- •38). Постулаты Бора. Условие квантования орбит.
- •39). Теория Бора для водородоподобного атома, её ограниченность.
- •40). Гипотеза де Бройля,её опытное подтверждение. Волновые свойства микрочастиц.
- •41). Соотношение неопределённостей как следствие корпускулярно-волновых свойств вещества.
- •42). Волновая функция. Её статистический смысл. Свойства волновой функции.
- •43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
- •45). Частица в одномерной потенциальной яме. Квантование энергии.
- •46). Туннельный эффект.
- •47). Уравнение Шредингера для атома водорода и его решение. 48). Квантовые числа.Вырожденные состояния.Обозначения состояний атома.Правила отбора.
- •49). Мультиплетность спектральных линий. Спин электрона. Спиновое квантовое число.
- •50). Принцип Паули. Распределение электронов в атоме по состояниям.
- •51). Периодическая система элементов д.И. Менделеева. Принципы её построения.
- •52. Спонтанное и вынужденное излучения атомов,их особенности. Инверсные состояния атомов.
- •53). Мазеры,лазеры,принцип их действия.
- •54 Вопрос! а) Размер, состав и заряд атомного ядра. Массовое и зарядовое числа. Изотопы
- •Б) дефект массы и энергия связи ядра
- •В) Закономерности a-распада, б-распад ниже
- •В) ядерные реакции и их основные типы
- •Г) реакция деления ядра
- •Д) цепная реакция деления
43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y(х, у, г, t), так как именно она, или, точнее, величина |Y|2, определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области сё координатами х и x+dx, у и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.
Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид
(217.1)
где ℏ=h/(2p), т - масса частицы, D - оператор Лапласа
i - мнимая единица, U (х, у, z, f) - потенциальная функция частицы в силовом поле, в котором она движется, Y (х, у, z, t)- искомая волновая функция частицы.
Уравнение
(217.1) справедливо для любой частицы (со
спином, равным 0; см. § 225), движущейся с
малой (по сравнению со скоростью света)
скоростью, т. е. со скоростью v<<c. Оно
дополняется условиями, накладываемыми
на волновую функцию: 1) волновая функция
должна быть конечной, однозначной и
непрерывной (см. § 216); 2) производные
должны
быть непрерывны; 3) функция |Y| должна
быть интегрируема; это условие в
простейших случаях сводится к условию
нормировки вероятностей (216.3).
Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)
x(х, t) = Acos(wt-kx), если в комплексной записи x(x, t) = Aei(wt-kx). Следовательно, плоская волна де Бройля имеет вид
(217.2)
(учтено, что w = E/ℏ, k = p/ℏ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y|2, то это (см. (217.2)) несущественно. Тогда
(217.3)
Используя взаимосвязь между энергией Е и импульсом р (Е = р2/(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение
которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения в используя взаимосвязь между Е и р (для данного случая р2/(2m) = Е-U), придем к дифференциальному уравнению, совпадающему с (217.1).
Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.
Уравнение
(217.1) является общим уравнением Шредннгера.
Его также называют уравнением Шредингера,
зависящим от времени. Для многих
физических явлений, происходящих в
микромире, уравнение (217.1) можно упростить,
исключив зависимость Y от
времени, иными словами, найти уравнение
Шредингера для стационарных
состояний - состояний
с фиксированными значениями энергии. Это
возможно, если силовое поле, в котором
частила движется, стационарно, т. е.
функция U = U(х,
у, z) не
зависит явно от времени и имеет смысл
потенциальной энергии. В данном случае
решение уравнения Шредингера может
быть представлено в виде произведения
двух функций, одна из которых есть
функция только координат, другая - только
времени, причем зависимость от времени
выражается множителем
,
так что
(217.4)
где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим
откуда после деления на общий множитель е и соответствующих преобразовании придем к уравнению, определяющему функцию y:
(217.5)
Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ф. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерыввый, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.
С
вободная
частица -
частица, движущаяся в отсутствие внешних
полей. Так как на свободную частицу
(пусть она движется вдоль оси х) силы
не действуют, то потенциальная энергия
частицы U(x)
= const и
ее можно принять равной нулю. Тогда
полная энергия частицы совпадает с ее
кинетической энергией. В таком случае
уравнение Шредингера (217.5) для стационарных
состояний примет вид
Прямой подстановкой можно убедиться в том, что частным решением уравнения (219.1) является функция y(x) =Aeikx, где A = const и k = const, с собственным значением энергии
(219.2)
Функция y(x) = Aeikx = Ae(i/k)Ö2mEx представляет собой только координатную часть волновой функции Y(х, t). Поэтому зависящая от времени волновая функция, согласно (217.4),
(219.3)
(здесь w = E/ℏ и k = px/ℏ). функция (219.3) представляет собой плоскую монохроматическую волну де Бройля (см. (217.2)).
Из выражения (219.2) следует, что зависимость энергии от импульса
оказывается обычной для нерелятивистских частиц. Следовательно, энергия свободной частицы может принимать любые значения (так как волновое число k может принимать любые положительные значения), т. е. ее энергетический спектр является непрерывным.Таким образом, свободная квантовая частица описывается плоской монохроматической волной де Бройля. Этому соответствует не зависящая от времени плотность вероятности обнаружения частицы в данной точке пространства
т. е. все положения свободной частицы в пространстве являются равновероятными.