
- •1). Интерференция световых волн. Когерентность световых волн. Условие максимума и минимума для интерференции света. Оптическая длина пути.
- •5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •7). Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •8). Дифракция Френеля на круглом отверстии:
- •9). Дифракция Фраунгофера на одной щели.
- •10). Дифракционная решетка. Дифракционная картина от решетки. Главные максимумы и минимумы.
- •11). Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
- •13). Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •14). Поляризация света. Естественный и поляризованный свет. Частичная и полная плоская поляризация света.
- •15). Прохождение света через поляризатор и анализатор. Закон Малюса.
- •16). Поляризация света при отражении. Закон Брюстера.
- •17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
- •18). Призма Николя. Оптический дихроизм. Поляризационные призмы и поляроиды.
- •19). Вращение плоскости поляризации света. Оптически активные вещества.
- •20). Магнитное вращение плоскости поляризации
- •21). Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •22). Поглощение света при прохождении через вещество. Механизм поглощения.
- •23). Рассеяние света в веществе.
- •24). Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •25). Эффект Вавилова- Черенкова.
- •26). Тепловое излучение. Основные характеристики теплового излучения. Равновесный характер теплового излучения.
- •27). Связь между лучеиспускательной и поглащательной способностями тел. Закон Кирхгофа. Абсолютно-чёрное тело.
- •28). Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •29). Теория Релея и Джинса. Затруднения классической теории излучения.
- •31). Внешний фотоэффект как квантовое явление и его законы. Применение фотоэффекта.
- •32). Фотон и его свойства. Энергия,импульс,масса и скорость фотона.
- •33). Давление света. Опыты Лебедева.
- •34). Эффект Комптона и его теория.
- •35). Корпускулярно-волновой дуализм. Соотношение между волновыми и корпускулярными свойствами света.
- •36). Спектральные серии в спектре излучения атома водорода.
- •37). Опыты Резерфорда. Планетарная модель атома. Её устойчивость.
- •38). Постулаты Бора. Условие квантования орбит.
- •39). Теория Бора для водородоподобного атома, её ограниченность.
- •40). Гипотеза де Бройля,её опытное подтверждение. Волновые свойства микрочастиц.
- •41). Соотношение неопределённостей как следствие корпускулярно-волновых свойств вещества.
- •42). Волновая функция. Её статистический смысл. Свойства волновой функции.
- •43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
- •45). Частица в одномерной потенциальной яме. Квантование энергии.
- •46). Туннельный эффект.
- •47). Уравнение Шредингера для атома водорода и его решение. 48). Квантовые числа.Вырожденные состояния.Обозначения состояний атома.Правила отбора.
- •49). Мультиплетность спектральных линий. Спин электрона. Спиновое квантовое число.
- •50). Принцип Паули. Распределение электронов в атоме по состояниям.
- •51). Периодическая система элементов д.И. Менделеева. Принципы её построения.
- •52. Спонтанное и вынужденное излучения атомов,их особенности. Инверсные состояния атомов.
- •53). Мазеры,лазеры,принцип их действия.
- •54 Вопрос! а) Размер, состав и заряд атомного ядра. Массовое и зарядовое числа. Изотопы
- •Б) дефект массы и энергия связи ядра
- •В) Закономерности a-распада, б-распад ниже
- •В) ядерные реакции и их основные типы
- •Г) реакция деления ядра
- •Д) цепная реакция деления
5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
Кольца Ньютона. Кольца Ньютона, являющиеся классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны (рис. 252). Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падении света имеющие вид концентрических окружностей.
В отраженном свете оптическая разность хода (с учетом потери полуволны при отражении), согласно (174.1), при условии, что показатель преломления воздуха n = 1, а I = 0,
где d-ширина зазора.
И
з
рис. 252 следует, что R2 =
(R - d)2 + r2, где R -
радиус кривизны линзы, r -
радиус кривизны окружности, всем точкам
которой соответствует одинаковый
зазор d. Учитывая,
что d мало,
получим d = r2/(2R). Следовательно,
(174.4)
Приравняв (174.4) к условиям максимума (172.2) и минимума (172.3), получим выражения для радиусов m-гoсветлого кольца и m-го темного кольца соответственно
Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить l0 и, наоборот, по известной l0 найти радиус кривизны R линзы.
Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волныl0 (см. (174.2)). Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были проведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l0/2, т. е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.
6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
Интерферометры - это измерительные приборы, в которых используется интерференция волн. В соответствии с природой волн существуют интерферометры акустические для звуковых волн и интерферометры для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Акустические интерферометры и радиоинтерферометры используются для измерения скорости распространения волн (акустических и радио), для измерения расстояний между двумя излучателями волн или между излучателем и отражающим телом, то есть применяются как дальномеры. Наибольшее распространение получили оптические интерферометры, о которых пойдёт речь ниже. Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд, для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей и так далее. Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. В основе интерферометров лежит пространственное разделение пучка света с помощью того или иного устройства с целью получения двух или более взаимно когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции. Вид интерференционной картины зависит от способа разделения пучка света на взаимно когерентные лучи, от их числа, их относительной интенсивности, размеров источника, спектрального состава света. Методы получения когерентных пучков в интерферометре очень разнообразны, поэтому существует большое число различных конструкций интерферометров. По числу интерферирующих пучков света оптические интерферометры можно разбить на многолучевые и двулучевые. Многолучевые интерферометры используются главным образом как спектрометры высокой разрешающей силы для исследования тонкой структуры спектральных линий и определения их формы, а двулучевые интерферометры являются в основном техническими приборами.
Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона.
Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через вето). Луч 1 отражается от зеркала М1 и, возвращаясь обратно, вновь проходит через пластинку Р1 (луч l'). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки Р1 (луч 2¢). Так как первый из лучей проходит сквозь пластинку Р1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р2 (точно такая же, как и Р1, только не покрытая слоем серебра).
Лучи 1¢ и 2' когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала М1 и луча 2 от точки О до зеркала М2. При перемещении одного из зеркал на расстояние l0/4 разность хода обоих лучей увеличится на l0/2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10-7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).
Российский физик В. П. Линник (1889-1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.
Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути интерферирующих лучей располагаются две одинаковые кюветы длиной l, одна из которых заполнена, например, газом с известным (n0), а другая - с неизвестным (nz) показателями преломления. Возникшая между интерферирующими лучами дополнительная оптическая разность хода D = (nz – n0)l. Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной
где m0 показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину m0 при известных l, m0 и l, можно вычислить nz, или изменение nz - n0. Например, при смещении интерференционной картины на 1/5 полосы при l = 10 см и l = 0,5 мкм (nz – n0) = 10-6, т.е. интерференционные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).
Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.