
- •1). Интерференция световых волн. Когерентность световых волн. Условие максимума и минимума для интерференции света. Оптическая длина пути.
- •5). Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •6). Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •7). Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •8). Дифракция Френеля на круглом отверстии:
- •9). Дифракция Фраунгофера на одной щели.
- •10). Дифракционная решетка. Дифракционная картина от решетки. Главные максимумы и минимумы.
- •11). Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •12). Дифракция рентгеновских лучей на пространственной решетке кристаллов. Формула Вульфа- Брегга. Изучение структуры кристаллов.
- •13). Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •14). Поляризация света. Естественный и поляризованный свет. Частичная и полная плоская поляризация света.
- •15). Прохождение света через поляризатор и анализатор. Закон Малюса.
- •16). Поляризация света при отражении. Закон Брюстера.
- •17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
- •18). Призма Николя. Оптический дихроизм. Поляризационные призмы и поляроиды.
- •19). Вращение плоскости поляризации света. Оптически активные вещества.
- •20). Магнитное вращение плоскости поляризации
- •21). Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •22). Поглощение света при прохождении через вещество. Механизм поглощения.
- •23). Рассеяние света в веществе.
- •24). Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •25). Эффект Вавилова- Черенкова.
- •26). Тепловое излучение. Основные характеристики теплового излучения. Равновесный характер теплового излучения.
- •27). Связь между лучеиспускательной и поглащательной способностями тел. Закон Кирхгофа. Абсолютно-чёрное тело.
- •28). Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •29). Теория Релея и Джинса. Затруднения классической теории излучения.
- •31). Внешний фотоэффект как квантовое явление и его законы. Применение фотоэффекта.
- •32). Фотон и его свойства. Энергия,импульс,масса и скорость фотона.
- •33). Давление света. Опыты Лебедева.
- •34). Эффект Комптона и его теория.
- •35). Корпускулярно-волновой дуализм. Соотношение между волновыми и корпускулярными свойствами света.
- •36). Спектральные серии в спектре излучения атома водорода.
- •37). Опыты Резерфорда. Планетарная модель атома. Её устойчивость.
- •38). Постулаты Бора. Условие квантования орбит.
- •39). Теория Бора для водородоподобного атома, её ограниченность.
- •40). Гипотеза де Бройля,её опытное подтверждение. Волновые свойства микрочастиц.
- •41). Соотношение неопределённостей как следствие корпускулярно-волновых свойств вещества.
- •42). Волновая функция. Её статистический смысл. Свойства волновой функции.
- •43). Общее уравнение Шредингера. 44). Уравнение Шредингера для стационарных состояний. Свободная частица.
- •45). Частица в одномерной потенциальной яме. Квантование энергии.
- •46). Туннельный эффект.
- •47). Уравнение Шредингера для атома водорода и его решение. 48). Квантовые числа.Вырожденные состояния.Обозначения состояний атома.Правила отбора.
- •49). Мультиплетность спектральных линий. Спин электрона. Спиновое квантовое число.
- •50). Принцип Паули. Распределение электронов в атоме по состояниям.
- •51). Периодическая система элементов д.И. Менделеева. Принципы её построения.
- •52. Спонтанное и вынужденное излучения атомов,их особенности. Инверсные состояния атомов.
- •53). Мазеры,лазеры,принцип их действия.
- •54 Вопрос! а) Размер, состав и заряд атомного ядра. Массовое и зарядовое числа. Изотопы
- •Б) дефект массы и энергия связи ядра
- •В) Закономерности a-распада, б-распад ниже
- •В) ядерные реакции и их основные типы
- •Г) реакция деления ядра
- •Д) цепная реакция деления
17). Поляризация света при двойном лучепреломлении. Обыкновенный и необыкновенные лучи. Причина их возникновения. Одноосные и двуосные кристаллы.
Явление двойного лучеприломления наблюдается в анизотропных средах (анизотропной называется среда, физические свойства которой в разных направлениях различны). Анизотропной средой будут кристаллы кварца и исландского шпата.
Естественный луч АВ разделяется в кристалле на два луча: BD и ВС. Луч BD называется необыкновенным лучом (Е).
Показатель преломления кристалла ne для необыкновенного луча зависит от направления распространяющего луча, и, следовательно, в различных направлениях необыкновенный луч в кристалле распространяется с различными скоростями. Луч ВС называется необыкновенным лучом (О). Скорость его в кристалле не зависит от направления (Рис. 5).
Р
ис.5
При прохождении света через все прозрачные кристаллы, за исключением принадлежащих к кубической системе, наблюдается явление, получившее название двойного лучепреломления. Это явление заключается в том, что упавший на кристалл луч разделяется внутри кристалла на два луча, распространяющиеся с разными скоростями и в различных направлениях. Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные и двуосные. У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления, в частности он лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности. Этот луч называется обыкновенным. Для другого луча, называемого необыкновенным, отношение синусов угла падения и угла преломления не остается постоянным при изменении угла падения. Кроме того, необыкновенный луч не лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности. Примером одноосных кристаллов служат исландский шпат, кварц, турмалин. У двуосных кристаллов ( например, слюда, гипс) оба луча необыкновенные - показатели преломления для них зависят от направления в кристалле.
Обыкновенные и необыкновенные лучи
Волна, вступающая из изотропной среды в оптически анизотропную среду (из воздуха в кристалл), разделяется на две линейно поляризованные волны: обыкновенную, вектор напряженности электрического поля которой перпендикулярен плоскости главного сечения кристалла, в которой лежат оптическая ось кристалла и нормаль к фронту волны (волновой вектор К), и необыкновенную с вектором Е, лежащем в плоскости главного сечения кристалла.
К обеим волнам применимы законы отражения и преломления. Но в анизотропных средах они относятся к волновым нормалям (к волновым векторам К), а не к световым лучам (вектору S). Волновые нормали отраженной и обеих преломленных волн лежат в одной плоскости падения. Их направления подчиняются закону преломления:
Индексы
o и e – относятся к обыкновенным и
необыкновенным лучам соответственно;
n – показатели преломления оптической
среды. ,
(1.13)
nо и ne показатели преломления обыкновенной и необыкновенной волн, из них nо не зависит, а ne зависит от угла падения света.
Если среда находится в кристаллическом состоянии, то ее частицы (атомы, молекулы или ионы) располагаются в строгом порядке, образуя кристаллическую решетку. Каждая частица находится в сильном взаимодействии с ближайшими соседями в решетке. Поэтому излучение вторичных волн частицами кристаллической среды зависит не только от электрических свойств самих частиц, но и от силового воздействия со стороны других частиц. Из сказанного ясно, что оптическая анизотропия кристалла может быть обусловлена как электрической анизотропией образующих его частиц, так и анизотропией поля сил взаимодействия между частицами. Характер этого поля, т.е. его изотропность или анизотропность, зависит от степени симметрии решетки кристалла.
Оптически изотропные вещества становятся оптически анизотропными под действием:1). одностороннего сжатия или растяжения (кристаллы кубической системы, стекла и др.);
2). Электрического поля (эффект Кера; жидкости, аморфные тела, газы);
3). Магнитного поля (жидкости, стекла, коллоиды).
В перечисленных случаях вещество приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением деформации, электрического или магнитного полей соответственно указанным выше воздействиям.
Мерой возникающей оптической анизотропии служит разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси:
(в
случае деформации)
(в
случае электрического поля);
(в
случае магнитного поля).