
- •Describe how to prepare a wet mount slide «The crushed drop» from liquid and agar microbic cultures.
- •1. Obtain a clean microscope slide.
- •What is the main technology of preparing the stains for determination of the morphology of microorganisms. What are the sizes and main shapes of the bacteria?
- •What kind of dye is used in microbiology? Name the methods of staining.
- •Types of Dyes
- •Ziehl-Neelsen Stain
- •India Ink
- •Methylene Blue Stain
- •Sketch a picture of the microorganism.
- •Sign the picture and specify Total Magnification (tm).
- •Gram Stain
- •4)What is the reason of using Gram staining? Describe this method of staining.
- •How Gram negative and Gram positive bacteria are looked like after Gram staining? Explain it.
- •How to distangushing Gram positive and Gram negative bacteria if you don’t have dyes and microscope? Describe this method and explain it.
- •Period 1
- •Period 2
- •What are the differences between slimy layer and capsule of bacteria? Capsules are considered protective structures. Various functions have been attributed to capsules including: ….
- •Biofilms – strategy of a survival of bacteria in environment. Characterize structure of biofilms. Explain the increased resistance of bacteria in biofilms.
- •Background
- •Results
- •Conclusion
- •Characterize spirochete. What features of their morphology and structure of cells. The habitat and representatives.
- •Classification
- •Spirochetes
- •12. Describe the methods Endospore (Spore) staining. Ozheshko method.
- •Explain the high resistance of bacterial endospores to unfavorable factors.
- •Characterize anaerobic spiral Gram- bacterium. What features of their morphology and structure of cells. The habitat and representatives.
- •Characterize sliding bacteria. What features of their morphology and structure of cells. The habitat and representatives.
- •Characterize budding bacteria. What features of their morphology and structure of cells. The habitat and representatives.
- •Characterize mycobacteria and nokardia forms. What features of their morphology and structure of cells. The habitat and representatives.
- •Characterize actinomycetes. What features of their morphology and structure of cells. The habitat and representatives.
- •What are the molecular and structural differences between archaea and eubacteria? Give a detailed response.
- •Bacterial Genome is consisted from 2 subsystems. Name and describe them. What properties of the cells are carried by plasmids.
- •Describe the internal structures of prokaryotic cell. Cytosol and Cytoplasm. Nonmembranous organelles: Ribosomes, Mesosomes. Nucleoid.
- •Bacteria can form specialized, morphologically differentiated structures. Describe them.
- •1. High molecular weight dna must bind to the cell surface.
- •2. The bound dna is taken up through the cell membrane.
- •3. The donor dna fragment is then integrated into the host chromosome or replicates autonomously as a plasmid.
- •Unlike eukaryote no true sexual reproduction is found in bacteria because: …. What are the features of the bacterial recombination
- •What are the functions of homologous associations of bacteria? Provide examples of homologous associations of bacteria.
- •Biochemical Tests: Microbiologists also use biochemical tests, noting a particular microbe's ability to utilize or produce certain chemicals.
- •What do the terms: pure culture, species, strain, clone in microbiology? What are the differential characteristics of the species?
- •What classification systems of microorganisms were offered before? Presents the modern classification system.
Characterize mycobacteria and nokardia forms. What features of their morphology and structure of cells. The habitat and representatives.
Mycobacteria are nonflagellated gram-positive microorganisms. Previously thought to be nonmotile, we show here that Mycobacterium smegmatis can spread on the surface of growth medium by a sliding mechanism. M. smegmatis spreads as a monolayer of cells which are arranged in pseudofilaments by close cell-to-cell contacts, predominantly along their longitudinal axis. The monolayer moves away from the inoculation point as a unit with only minor rearrangements. No extracellular structures such as pili or fimbriae appear to be involved in this process. The ability to translocate over the surface correlates with the presence of glycopeptidolipids, a mycobacterium-specific class of amphiphilic molecules located in the outermost layer of the cell envelope. Although most mycobacteria are free-living saprophytic organisms, much of the research on this genus has focused on those species that are pathogenic to humans. These include obligate pathogens such as the leprosy bacillus, M. leprae, and the tubercule bacillus, M. tuberculosis, which kills more than 3 million people per year and infects one-third of the world population. Others are opportunistic pathogens which occur naturally in the environment but can occasionally cause disease, especially in immunocompromised individuals. The most important of the opportunistic pathogens are the members of the M. avium-M. intracellulare complex, which are a leading cause of bacteremia in AIDS patients One of the most striking characteristics of mycobacteria is the enormous complexity of their cell envelope. Extensive chemical analyses have shown that the cell wall of mycobacteria consists of three components. The outside layer is composed of mycolic acids, a complex mixture of long-chain α-branched β-hydroxy fatty acids which are arranged as a densely packed monolayer. The mycolic acids are covalently linked to arabinogalactan, which is in turn attached to the peptidoglycan layer. This complex cell wall is surrounded by a capsule of noncovalently bound polysaccharides, proteins, and a small amount of lipids, which include the species- and type-specific glycopeptidolipids (GPLs) and phenolic glycolipids. This unusual envelope provides mycobacteria with remarkable impermeability to external substances, a critical virulence determinant for these organisms.
Nocardia is a genus of weakly staining Gram-positive, catalase-positive, rod-shaped bacteria. It forms partially acid-fast beaded branching filaments (acting as fungi, but being truly bacteria). It has a total of 85 species. Some species are non-pathogenic while others are responsible for nocardiosis.[1] Nocardia are found worldwide in soil that is rich with organic matter. In addition, Nocardia are oral microflora found in healthy gingiva as well as periodontal pockets. Most Nocardia infections are acquired by inhalation of the bacteria or through traumatic introduction.Nocardia colonies have a variable appearance, but most species appear to have aerial hyphae when viewed with a dissecting microscope, particularly when they have been grown on nutritionally limiting media. Nocardia grow slowly on non-selective culture media, and are strict aerobes with the ability to grow in a wide temperature range. Some species are partially acid fast (meaning that a less concentrated solution of sulfuric or hydrochloric acid should be used during the staining procedure) due to the presence of intermediate-length mycolic acids in their cell wall. Majority of strains possess the cord factor (trehalose 6-6' dimycolate) an important virulence factor.The various species of Nocardia are pathogenic bacteria with low virulence; therefore clinically significant disease most frequently occurs as an opportunistic infection in those with a weak immune system, such as small children, the elderly, and the immunocompromised (most typically, HIV).Nocardia asteroides is the species of Nocardia most frequently infecting humans, and most cases occur as an opportunistic infection in immunocompromised patients. Other species of medical interest are N. brasiliensis and N. caviae. Because it is acid-fast to some degree, it stains only weakly gram positive.The most common form of human nocardial disease is a slowly progressive pneumonia, whose common symptoms include cough, dyspnea (shortness of breath), and fever.