
- •1. Роль дисциплины в подготовке инженеров по автоматизации. Связь дисциплины с другими общенаучными и специальными дисциплинами.
- •2. Единство измерений. Роль Закона «Об обеспечении единства измерений».
- •3. Метрология – научная основа гси.
- •4. Законодательная метрология.
- •5. Фундаментальная метрология.
- •6. Прикладная метрология.
- •7. Измерения. Основной закон измерения.
- •8. Объекты измерения, размерность.
- •9. Физическая величина. Истинное и действительное значение физической величины.
- •10. Системы единиц физических величин. Международная система единиц физических величин.
- •11. Основные методы измерений.
- •12. Виды измерений. Классификация.
- •13. Погрешности измерений. Классификация.
- •14. Случайные погрешности. Определение. Классификация.
- •15. Основные характеристики законов распределения случайных наблюдений.
- •16. Оценки основных характеристик законов распределения случайных наблюдений.
- •18. Оценка и учет погрешностей при точных измерениях. Аксиома случайности и аксиома распределения.
- •19.Оценка точности результата наблюдений. Оценка точности результата измерения.
- •20. Оценка и учет погрешностей при технических измерениях.
- •21. Систематические погрешности. Определение. Классификация.
- •22. Систематические погрешности. Общие приемы их исключения.
- •23. Систематические погрешности. Методы компенсации.
- •24. Обработка результатов однократных прямых измерений.
- •25. Обработка результатов косвенных измерений.
- •26. Статистическая обработка результатов многократных прямых измерений.
- •27. Средства измерений. Классификация си.
- •28. Унифицированные средства измерений.
- •29. Эталоны, образцовые и рабочие си.
- •30. Эталоны, их классификация.
- •31. Эталон длины. «Метр Архива». Эталон массы. «Килограмм Архива».
- •32. Основные метрологические характер-ки си. Их классификация.
- •33. Класс точности и допус. Погрешности.
- •34. Основная и дополнительная погрешность.
- •35. Абсолютная, относительная и приведенная погрешности измерительных приборов. Формулы, определения.
- •36. Абсолютная погрешность измерительных преобразователей. Формулы, определения.
- •37. Относительная погрешность измерит. Преобразователей. Формулы, определения.
- •38. Приведенная погрешность измерительных преобразователей. Формулы, определения.
- •39. Погрешности си в зависимости от значения измеряемой величины.
- •40. Методика оценки суммарной погрешности измерительного канала.
- •41. Статические (линейные) характер-ки си.
- •42. Обеспечение единства измерений. Правовые основы. ГмКиН.
- •43. Поверка и калибровка си. Определения. Правовые основы.
- •44. Методы поверки (калибровки) средств измерений.
- •45. Виды поверок (калибровок).
- •46. Межповер. Интервал. Определение, виды.
- •47. Поверочные схемы. Виды и содержание.
- •48. Основные методы измерений постоянных токов и напряжений.
- •49. Косвенные измерения постоянных токов и напряжений.
- •50. Особенности измерений малых токов и напряжений.
- •51. Особенности измерений больших токов и напряжений.
- •52. Особенности измерений переменных токов и напряжений.
- •53. Си постоянных токов и напряжений.
- •54. Си переменных токов и напряжений.
- •55. Особенности измерений токов и напряжений в трехфазных цепях.
- •56. Измерения мощности. Си мощности постоянного и переменного однофазного тока.
- •57. Измерения электрической энергии. Си энергии постоянного и переменного однофазного тока.
- •58. Измерения количества электричества. Си количества электричества.
- •59. Измерения частоты. Си частоты.
- •60. Осциллограф. Методы измерения частоты.
- •61. Измерения временных интервалов. Си временных интервалов.
- •62. Измерения фазового сдвига. Осциллографические методы измерения фазового сдвига.
- •63. Прямые измерения сопротивления постоянному току.
- •64. Косвенные измерения сопротивления постоянному току.
- •65. Точные измерения сопротивлений и измерения нелинейных сопротивлений.
- •66. Измерение малых сопротивлений. Си малых сопротивлений.
- •67. Измерение больших сопротивлений. Си больших сопротивлений.
- •68. Иис. Агрегатно-модульный метод проектирования. Функции иис.
- •69. Иис. Обобщенная структурная схема.
- •70. Иис. Структуры иис.
- •71.Иис. Автоматизированная система контроля и учета электроэнергии.
- •72. Аскуэ. Типы и достоверность результатов измерений.
- •73. Формы представления результатов измерений. Правила округления результата измерения.
- •1. Роль дисциплины в подготовке инженеров по автоматизации. Связь дисциплины с другими общенаучными и специальными дисциплинами.
- •2. Единство измерений. Роль Закона «Об обеспечении единства измерений».
65. Точные измерения сопротивлений и измерения нелинейных сопротивлений.
Для точных измерений сопротивлении и нелинейных сопротивлении могут быть использованы схемы, основанные на методе сравнения. В схеме на рисунке а) последовательно изменяя положение переключателя В, измеряют токи Ix и I0 , протекающие через объект Rx и образцовый резистор R0 . При постоянном напряжении U справедливо равенство Ix Rx= I0 R0. При точных измерениях может быть использована схема на рисунке б), где последовательно измеряют напряжения Ux и U0 на Rx и R0 компенсатором постоянного тока КПТ. Получаем Rx= R0 Ux/ U0. Достоинствами таких схем является относительно невысокие требования к стабильности источника питания и возможность точных измерений при использовании высокоточных резисторов R0.
66. Измерение малых сопротивлений. Си малых сопротивлений.
При измерении малых сопротивлений существенное влияние на результат измерения оказывают сопротивления контактов и подводящих проводов, а также контактнаятермо-ЭДС. Для уменьшения этого влияния применяют четырехзажимную схему подключения исследуемого объекта к приборам, а измерения производят при разных направлениях постоянного тока (в мостах) или на переменном токе (в электронных миллиомметрах). Наиболее точными в данном диапазоне являются двойные мосты. При измерении очень малых сопротивлений для обеспечения необходимой чувствительности моста требуется через исследуемый объект пропускать большие токи. Измерение малых сопротивлений одинарными мостами производят в более узком диапазоне — начиная с Ю-4 Ом. Точность измерения такими мостами малых сопротивлений ниже точности измерения двойными мостами. В электронных миллиомметрах измерения производятся на переменном токе, что позволяет значительно снизить мощность, выделяемую на объекте измерений. Обычно напряжение на исследуемом объекте составляет десятки милливольт.
67. Измерение больших сопротивлений. Си больших сопротивлений.
Сложность измерения больших сопротивлений определяется прежде всего шунтирующим влиянием сопротивления изоляции между входными зажимами приборов, которое при изготовлении и дестабилизирующем влиянии внешних факторов (температуры, влажности, загрязнения и др.) не может быть обеспечено постоянным. Кроме того, токи, протекающие через объекты с большим сопротивлением, становятся весьма малыми, что предъявляет высокие требования к чувствительности средств измерений. В связи с этим приходится повышать напряжение на исследуемом объекте до сотен и даже тысяч вольт. Это предъявляет соответствующие требования к измеряемым объектам. Для измерения таких сопротивлений с наибольшей точностью применяют одинарные мосты постоянного тока. Цифровые омметры существенно уступают мостам по верхнему пределу измерений и по точности. Однако погрешности измерений ими составляют единицы процентов и более. Наиболее простыми являются магнитоэлектрические мегомметры, построенные на основе логометрического механизма. Диапазон измерений таких приборов весьма узок.