
- •И.С. Полянская
- •Глава 1 Нутрициологическая химия элементов и нутрициология
- •1.1 Лингвистическое обоснование названия науки «Нутрициологическая химия элементов»
- •1.1.1 Химия: происхождение и место среди других наук
- •1.1.2 Происхождение «элементов»
- •1.1.3 Происхождение «нутрициологии» и ее связь с другими науками
- •1.2 Иатрохимия Парацельса – колыбель нутрициологии
- •1.3 Взаимосвязь нутрициологии с современными науками
- •1.3.1 Диетология и нутрициология
- •1.3.2 Наука о питании и нутрициологическая химия элементов
- •Глава 2 Нутриционные s-элементы
- •2.1 Периодическая система, элементные классификации и место в них s-элементов
- •2.2 Общие свойства элементов I группы
- •2.3 Натрий и калий
- •2.3.1 Нутрициологическая функция к и Na
- •2.3.2 Элементы к и Na вокруг нас. Применение. Содержание в воде и продуктах питания
- •2.3.3 Нутрициологическая потребность в к и Na. Проявления дефицита и избытка. Синергисты и антагонисты усвоения
- •2.3.4 Оптимизация усвоения к и Na
- •2.3.5 Анализ нутриционного статуса в организме, определение к и Na в водах, продуктах, пищевых добавках
- •2.4 Общие свойства элементов II группы
- •2.5 Кальций
- •2.5.1 Нутрициологическая функция Са
- •2.5.2 Элемент Са вокруг нас. Применение. Содержание в воде и продуктах питания
- •2.5.3 Нутрициологическая потребность в Ca. Проявления дефицита и избытка
- •2.5.4 Оптимизация усвоения Сa. Синергисты и антагонисты усвоения
- •2.5.5 Роль кальция в структуре мицеллы казеина молока
- •2.5.6 Анализ нутриционного статуса в организме, определение элементов в водах, продуктах, пищевых добавках
- •2.6 Магний
- •2.6.1 Нутрициологическая функция элемента
- •2.6.2 Элемент Mg вокруг нас. Применение. Распространение в природе и продуктах питания
- •2.6.3 Нутрициологическая потребность в Mg. Проявления дефицита и избытка
- •2.6.4 Оптимизация усвоения Мg. Синергисты и антагонисты
- •2.6.5 Анализ нутриционного статуса в организме, определение элемента в водах, продуктах, пищевых добавках
- •Глава 3 Ценность продукта: пищевая, биологическая, иммунологическая, нутриционная
- •3.1 Развитие концепции функциональных продуктов питания
- •3.2 Функциональные продукты кальциевой группы
- •Глава 4 Магнитная обработка сырья, пищевых продуктов и воды; механизм влияния на s-элементы
- •4.1 Природные магниты и магнитная обработка биологических систем
- •4.2 Влияние магнитного поля на различные подсистемы молока
- •4.2.1 Магнитная восприимчивость водных растворов солей s-элементов
- •4.2.2 Влияние омагничивания на белковую систему молока
- •Заключение
- •Глоссарий
- •Список литературных источников
- •Глава 1 Нутрициологическая химия элементов и нутрициология 7
- •Глава 2 Нутриционные s-элементы 29
- •Глава 3 Ценность продукта: пищевая, биологическая, иммунологическая, нутриционная 81
- •Глава 4 Магнитная обработка сырья, пищевых продуктов и воды; механизм влияния на s-элементы 99
- •160555 Г. Вологда, c. Молочное, ул. Шмидта, 2
2.5.6 Анализ нутриционного статуса в организме, определение элементов в водах, продуктах, пищевых добавках
Качественно присутствие кальция можно доказать:
- сжиганием в пламени горелки (кирпично-красный цвет);
- реакцией с оксалатом аммония;
- реакцией с серной кислотой или сульфатами щелочных металлов;
- микрокристаллоскопической реакцией получения сульфата кальция [31].
Количественно ионы кальция могут быть определены:
- с помощью ионселективных электродов;
- фотометрически;
- люминисцентным методом с применением соединений (например, флюорексона), которые с солями кальция в растворах дают флюоресцирующие комплексы;
- комплексонометрическим методом с индикатором кислотным хромовым темно-синим. В шелочной среде комплекс вишнево-красный цвет комплекса Ind ∙ Са при титровании трилоном Б меняется на сине-сиреневую (цвет индикатора).
Разработан «Костный тест» [241], который помогает определить, не теряют ли кости нужный им кальций, не угрожает ли человеку остеопороз.
2.6 Магний
2.6.1 Нутрициологическая функция элемента
Ион магния оказывает сосудорасширяющее и противосудорожное действие. Природный спазмальгетик – главная нутрициологическая функция магния. Основное средство против судорог икроножных мышц. Образуя в клетках комплексы с нуклеиновыми кислотами, магний участвует в передаче нервного импульса, сокращении мышц, метаболизме углеводов.
Над значением магния для человеческого организма задумались, когда установили сходную структуру хлорофилла и гемоглобина, с единственным различием – в состав последнего входит железо, а в состав хлорофилла – магний [102]. Это открытие подтвердило связь эволюции растительного и животного миров, поэтому в настоящее время некоторые ученые связывают возрастающий уровень болезней цивилизации в значительной степени со снижающимся поступлением магния в организм. У жителей районов с более теплым климатом спазмы кровеносных сосудов случаются реже, чем у северян за счет большей доли в рационе фруктов и зеленых овощей. Животные, в рационе которых мало магния «зарабатывают» инфаркт миокарда [147].
Кроме главной спазмальгетической функции магний:
- участвует в поддержании нормальной функции нервной системы и мышцы сердца;
- снижает уровень холестерина в крови и тканях;
- стимулирует желчеотделение;
- повышает двигательную активность кишечника, что способствует выведению шлаков и холестерина из организма;
- наряду с кальцием и калием регулирует ионный транспорт через мембраны;
- необходим для активизации ряда ключевых ферментов, участвующих в синтезе белков, жиров, углеводов, АТФ, нуклеиновых кислот;
- регулирует активность ферментативных систем углеводно-фосфорного и энергетического обмена;
- предупреждает образование камней в почках [102];
- контролирует работу митохондрий – главных энергетических станций организма. Он, как невидимый кочегар, пережигает все ненужное и следит за работой электростанции, но стоит ему отлучиться – и работа всего организма сорвана. Отодвигает момент переутомления при умственных и физических нагрузках. При стрессе повышается потребность в энергии и в магнии [86];
- принимает участие в нескольких сотнях других эссенциальных метаболических реакциях [86];
- играет, наряду с кальцием и фосфором, структурную роль в костной ткани.
Ионы магния и кальция по своим характеристикам в большей степени отличаются друг от друга, чем ионы натрия и калия. Ион магния, по сравнению с ионом кальция проявляет большую тенденцию к образованию ковалентных донорно-акцепторных связей с электроотрицательными атомами (N, О) входящими в состав биологических макромолекул (белков, нуклеиновых кислот). Это обусловливает большие ферментативные функции магния, по сравнению с кальцием.