
- •И.С. Полянская
- •Глава 1 Нутрициологическая химия элементов и нутрициология
- •1.1 Лингвистическое обоснование названия науки «Нутрициологическая химия элементов»
- •1.1.1 Химия: происхождение и место среди других наук
- •1.1.2 Происхождение «элементов»
- •1.1.3 Происхождение «нутрициологии» и ее связь с другими науками
- •1.2 Иатрохимия Парацельса – колыбель нутрициологии
- •1.3 Взаимосвязь нутрициологии с современными науками
- •1.3.1 Диетология и нутрициология
- •1.3.2 Наука о питании и нутрициологическая химия элементов
- •Глава 2 Нутриционные s-элементы
- •2.1 Периодическая система, элементные классификации и место в них s-элементов
- •2.2 Общие свойства элементов I группы
- •2.3 Натрий и калий
- •2.3.1 Нутрициологическая функция к и Na
- •2.3.2 Элементы к и Na вокруг нас. Применение. Содержание в воде и продуктах питания
- •2.3.3 Нутрициологическая потребность в к и Na. Проявления дефицита и избытка. Синергисты и антагонисты усвоения
- •2.3.4 Оптимизация усвоения к и Na
- •2.3.5 Анализ нутриционного статуса в организме, определение к и Na в водах, продуктах, пищевых добавках
- •2.4 Общие свойства элементов II группы
- •2.5 Кальций
- •2.5.1 Нутрициологическая функция Са
- •2.5.2 Элемент Са вокруг нас. Применение. Содержание в воде и продуктах питания
- •2.5.3 Нутрициологическая потребность в Ca. Проявления дефицита и избытка
- •2.5.4 Оптимизация усвоения Сa. Синергисты и антагонисты усвоения
- •2.5.5 Роль кальция в структуре мицеллы казеина молока
- •2.5.6 Анализ нутриционного статуса в организме, определение элементов в водах, продуктах, пищевых добавках
- •2.6 Магний
- •2.6.1 Нутрициологическая функция элемента
- •2.6.2 Элемент Mg вокруг нас. Применение. Распространение в природе и продуктах питания
- •2.6.3 Нутрициологическая потребность в Mg. Проявления дефицита и избытка
- •2.6.4 Оптимизация усвоения Мg. Синергисты и антагонисты
- •2.6.5 Анализ нутриционного статуса в организме, определение элемента в водах, продуктах, пищевых добавках
- •Глава 3 Ценность продукта: пищевая, биологическая, иммунологическая, нутриционная
- •3.1 Развитие концепции функциональных продуктов питания
- •3.2 Функциональные продукты кальциевой группы
- •Глава 4 Магнитная обработка сырья, пищевых продуктов и воды; механизм влияния на s-элементы
- •4.1 Природные магниты и магнитная обработка биологических систем
- •4.2 Влияние магнитного поля на различные подсистемы молока
- •4.2.1 Магнитная восприимчивость водных растворов солей s-элементов
- •4.2.2 Влияние омагничивания на белковую систему молока
- •Заключение
- •Глоссарий
- •Список литературных источников
- •Глава 1 Нутрициологическая химия элементов и нутрициология 7
- •Глава 2 Нутриционные s-элементы 29
- •Глава 3 Ценность продукта: пищевая, биологическая, иммунологическая, нутриционная 81
- •Глава 4 Магнитная обработка сырья, пищевых продуктов и воды; механизм влияния на s-элементы 99
- •160555 Г. Вологда, c. Молочное, ул. Шмидта, 2
2.5.3 Нутрициологическая потребность в Ca. Проявления дефицита и избытка
Адекватный уровень потребления для детей первого года жизни 400–600 мг; для более старших, в зависимости от возраста, 800–1200 мг; для взрослых 800–1000 мг; для беременных и лактирующих женщин 1000–12000 мг кальция в день. Недостаточное поступление кальция с пищей в детском возрасте, снижение его отложения в костной ткани, служит в дальнейшем одним из главных факторов риска возникновения остеопороза. Особенно высока потребность в кальции у подростков в 14–17 лет, беременных и кормящих женщин [166]. Повышенный расход кальция (на 30–50% выше физиологической нормы) наблюдается при отравлениях тяжелыми металлами и другими химическими веществами (ксенобиотиками).
Ученые насчитали около 300 различных патологических состояний, вызванных дефицитом кальция в организме, среди которых:
- рахитические изменения пропорций черепа, искривление позвоночника, костей нижних конечностей;
- уплощение костей таза, что в будущем у женщин может стать причиной тяжелых родов;
остеопороз (рассасывание костной ткани), склонность к переломам костей у лиц пожилого возраста;
- высокая потливость, раннее облысение, тусклый цвет волос;
- склонность кожи к аллергическим сыпям;
- нарушение роста зубов, раннее разрушение эмали;
- повышенная возбудимость нервной системы, раздражительность, подергивание век;
- плохая свертываемость крови, склонность к длительным кровотечениям;
- мышечная слабость, затруднения координации движения.
С дефицитом кальция связаны и низкое плодородие почв, болезни животных. Если животные испытывают дефицит кальция: птицы несут мало яиц, у моллюсков тонкие раковины, млекопитающие остаются маленькими во взрослом возрасте. В молоке домашних животных сравнительно мало кальция. Дикие животные пасутся в степях, а там, в сухом климате, кальций накапливается в почвах в виде гипса и содержится в большом количестве в травах. Потому домашним животным дают минеральную подкормку с известняком или мелом в измельченном виде, ими же обогащают почву.
99% кальция в организме находится в костях и зубах, ногтях и волосах преимущественно в виде гидроксилапатита (гидроксифосфат кальция Са5(РО4)3ОН), его произведение растворимости ПР = 1,6 ∙10–58. В поверхностных слоях костей содержится более растворимый фосфат кальция (ПР = 1,0 ∙10–25) [99]. С возрастом содержание фосфата кальция уменьшается.
Образование костной соли можно отразить общим уравнением [227]:
минерализация
5Са2+ + 3НРО42– + 4ОН– ↔ Са5(РО4)3ОН.
деминерализация
У взрослого человека весь кальций кости обновляется каждые 5–10 лет, у растущих детей за 1–2 года.
Роль депо (когда при неблагоприятных условиях кальций выходит во внеклеточное пространство и участвует практически во всех биологических процессах) играет, прежде всего, более растворимый по сравнению с гидроксилапатитом, фосфат кальция:
Са3(РО4)2 + Н2О ↔ Са2+ + НРО42– + ОН–,
НРО42– + Н2О ↔ Са2+ + Н2РО4– + ОН–,
Н2РО4– + Н2О ↔ Са2+ + Н3РО4 + ОН–,
При недостатке фосфата кальция начинает растворяться гидроксилапатит, чему способствует повышение кислотности среды, концентрации лактатов, цитратов и белков, которые связывают ионы кальция в результате комплексообразования:
Са5(РО4)3ОН + 2Н+ ↔ Са2+ + Са4Н(РО4)3 + Н2О,
а при большей кислотности среды:
Са5(РО4)3ОН + 7Н+ ↔ 5Са2+ + 3Н2РО4– + Н2О.
Эти же процессы могут протекать с зубами, ведь в полости рта в результате жизнедеятельности микробов образуются пировиноградная, молочная, янтарная кислоты, не только повышающие кислотность среды, но и связывающие катионы кальция в устойчивые комплексные соединения [227].
Таким образом, уровень кальция сыворотки крови тщательно регулируется организмом (примерно 2,5 ммоль/л), чтобы сохранить внеклеточную концентрацию кальция и, таким образом, обеспечить нормальную нейромышечную и гормональную функцию.
Хотя токсичность кальция низкая, и его избыток автоматически удаляется фильтрующей системой организма, высокое поступление витамина D может привести к гиперкальциумии: отложению солей кальция под кожей, в мышцах, железах, сосудах, почках, уменьшая их эластичность. Желчные и мочевые камни – это практически на 90% оксалаты кальция. Верхним допустимым уровнем потребления считается 2500 мг/сут.