
- •Построение моделей. Типы моделей
- •Выпуклые множества. Выпуклые функции. Критерии выпуклости функции
- •Постановка задачи оптимизации. Необходимое условие экстремума. Достаточное условие экстремума
- •Определение поверхности (линии) уровня и направления наискорейшего роста целевой функции. Критерий оптимальности
- •Задачи на условный экстремум. Метод множителей Лагранжа. Необходимое условие существования условного локального экстремума функции
- •Задача выпуклого программирования. Теорема Куна-Таккера
- •Постановка задач линейного программирования. Формы записи злп
- •Предмет исследования операций
- •Основное неравенство теории двойственности. Основная теорема двойственности
- •Правило нахождения разрешающего элемента при использовании симплекс-метода. Экономическая интерпретация выбора направляющей строки и столбца
- •Правило построения новой симплексной таблицы. Как выписывается улучшенное решение из новой таблицы
- •Принятие решений в условиях неопределенности. Критерий Лапласа. Критерий Гурвица
- •Двойственность задач линейного программирования. Правило построения двойственной задачи
- •Двойственный симплекс-метод
- •Алгоритм двойственного симплекс-метода
- •Задача коммивояжера. Метод ветвей и границ
- •Задача о назначениях. Венгерский метод
- •Метод Гомори
- •Задачи нахождения кратчайшего пути. Алгоритм Дейкстры
- •Сетевые модели
- •Метод потенциалов
- •Задача нахождения кратчайшего пути. Алгоритм Флойда
- •Математическая постановка и разрешимость транспортной задачи
- •Метод северо-западного угла
- •Метод минимального элемента
- •Задача о максимальном потоке. Алгоритм нахождения максимального потока
- •Перебор разрезов
- •Экономическая интерпретация двойственных переменных. Анализ устойчивости двойственных оценок
- •Метод искусственного базиса (модифицированный симплекс метод)
- •2.1 Положительность строки m
- •2.2 Положительность строки f
Двойственность задач линейного программирования. Правило построения двойственной задачи
Теория двойственности представляет собой весьма важное, как с чисто теоретической, так и с практической точки зрения, направление математического программирования. Основной идеей теории двойственности является то, что для каждой задачи линейного программирования (ЛП) существует некоторая задача ЛП, решение которой тесно связано с решением прямой. Между решениями прямой и двойственной задач имеется ряд важных соотношений, полезных при исследовании общих свойств оптимального решения задач ЛП и проверке оптимальности допустимого решения. Рассмотрим задачу: найти min f(x), x Є Rn (1) при ограничениях gj( x)≤ 0, j = 1, m; m<n. Эту задачу называют прямой. Существует связанная с ней задача максимизации, называемая двойственной: L( x,λ) = max , (2) где L(x,λ) – функция Лагранжа. Понятие двойственности устанавливает определенные отношения между решениями прямой и двойственной задач. Определение. Две экстремальные задачи называются эквивалентными, если множества их решения совпадают, либо обе задачи не имеют решений.
Правила построения задачи, двойственной по отношению к ЗЛП, наглядно представлены схемой, показанной на рис. 1.9.
Как следует из приведенной схемы при переходе от прямой задачи ЛП к двойственной:
1. Тип оптимума меняется на противоположный, т. е. максимум на минимум, и наоборот.
2. Вектор коэффициентов целевой функции с и столбец ограничений b меняются местами.
3. Матрица ограничений задачи A транспонируется.
4. Множество индексов переменных, на которые наложено условие неотрицательности в прямой задаче (например, хj ≥ 0 или uj ≥ 0), определяют номера ограничений, имеющих форму неравенств в двойственной задаче (aju ≥ сj или aix ≤ bj).
5. Множество номеров ограничений, имеющих форму неравенств в прямой задаче (например, aix≤ bj или aju ≥ сj), определяют множество индексов переменных, на которые накладывается условие неотрицательности, в двойственной задаче (ui ≥ 0 или xi ≥ 0).
В матричной форме пара двойственных общих задач линейного программирования может быть кратко записана как:
Двойственный симплекс-метод
Двойственный симплексный метод основан на теории двойственности и используется для решения задач линейного программирования, свободные члены которых bi могут принимать любые значения, а система офаничений задана неравенствами смысла «≤», «≥» или равенством «=». В двойственном симплексном методе оптимальный план получается в результате движения по псевдопланам.
Псевдоплан
план, в котором условия оптимальности удовлетворяются, а среди значений базисных переменных xi имеются отрицательные числа.
Алгоритм двойственного симплекс-метода включает следующие этапы:
Составление псевдоплана. Систему ограничений исходной задачи приводят к системе неравенств смысла «≤».
Проверка плана на оптимальность. Если в полученном опорном плане не выполняется условие оптимальности, то задача решается симплексным методом.
Выбор ведущих строки и столбца. Среди отрицательных значений базисных переменных выбираются наибольшие по абсолютной величине. Строка, соответствующая этому значению, является ведущей.
Расчет нового опорного плана. Новый план получается в результате пересчета симплексной таблицы по правилу треугольника. Далее переход к этапу 2.