
- •1. Исходные данные
- •1.1 Технико-экономическая характеристика района строительства
- •Природно-климатические условия района строительства
- •1.3 Требования, предъявляемые к зданию
- •Объемно-планировочное решение
- •3.Обоснование конструктивного решения здания
- •3.1 Внутрицеховое подъемно-транспортное оборудование
- •3.1 Фундамент
- •3.2 Внешние стены
- •Внутренние стены и перегородки
- •Перекрытия и покрытия
- •Крыша и кровля
- •Окна и двери
- •3.8. Стальные подкрановые балки
- •3.9. Железобетонные стропильные балки и фермы.
- •3.10. Фонари промышленных зданий
- •4.Наружная и внутренняя отделка
- •5.Административно-бытовой корпус.
- •6. Технико-экономические показатели проектируемого здания
- •Список литературы
Объемно-планировочное решение
Конфигурация и размеры плана, высота и профиль промышленного здания определяются параметрами, количеством и взаимным расположением пролетов. Эти факторы зависят от технологии производства, характера выпускаемой продукции, производительности предприятия, требований санитарных норм и пр.
Ширина пролета в промышленном здании L=12м – расстояние между продольными координационными осями
Шаг колонн – расстояние между поперечными координационными осями – назначают с учетом габаритов и способа расстановки технологического оборудования, размеров выпускаемых изделий, вида внутрицехового транспорта. В=12 м
Высота пролета – расстояние от уровня чистого пола до низа несущих конструкций покрытия – зависит от технологических, санитарно-гигиенических и экономических требований, предъявляемых к промышленному зданию. Складывается она в пролетах с мостовыми кранами из расстояний от уровня чистого пола до верха кранового рельса Н1=19 м.
3.Обоснование конструктивного решения здания
3.1 Внутрицеховое подъемно-транспортное оборудование
Технологический процесс требует перемещения внутри здания сырья, полуфабрикатов, готовой продукции и т.п. Применяемое при этом подъемно-транспортное оборудование необходимо не только с точки зрения технологии производства, но и для облегчения труда, а также для монтажа и демонтажа технологических агрегатов.
Мостовые краны имеют грузоподъемность 10т.
Несущий мост выполняют в виде пространственных четырехплоскостных коробчатых балочных или ферменных конструкций. Краны перемещаются по рельсам, уложенным по подкрановым балкам, опирающимся на консоли колонн. Управляют мостовыми кранами из подвешенной к мосту кабины или с пола цеха (краны с ручным управлением).
Привязка колонн серии ИИ 20/70
Колонны средних рядов имеют осевую привязку, а крайних продольных рядов – нулевую – их наружная грань совпадает с координационной осью.
Для торцовых колонн здания допускают три решения:
а) колонны располагают центрально на поперечной координационной оси, а стены - с привязкой 530 мм (рис. 6а);
б) колонны сдвинуты относительно своей геометрической оси на 500 мм от модульной координационной оси (рис. 6б);
в) колонны имеют осевую привязку (рис.6в).
3.1 Фундамент
Под колонны каркасного здания устраивают, как правило, столбчатые фундаменты с подколонниками стаканного типа, а стены опирают на фундаментные балки. Ленточные и сплошные фундаменты предусматривают редко, как правило, на слабых, просадочных грунтах и при больших ударных нагрузках на грунт технологического оборудования.
Унифицированные монолитные железобетонные фундаменты имеют ступенчатую форму с подколонником стаканного типа для заделки колонн.
Ступени плиты всех фундаментов имеют единую унифицированную высоту 300 мм или 450 мм.
В верхней части подколонника устроен стакан для установки в него колонны. Дно стакана располагают на 50 мм ниже проектной отметки низа колонны для того, чтобы компенсировать подливкой раствора неточности в размерах и заложении фундаментов.