Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzPROM_SL.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.13 Mб
Скачать

3. Водо-, нефте-, газонасыщенность.

Полагают, что нефтенасыщенные и газонасыщенные пласты первоначально были полностью насыщены

водой. При образовании залежей нефть и газ вследствие их меньшей плотности мигрировали в повышенные части пластов, вытесняя оттуда воду. Однако вода из пустотного пространства вытеснялась не полностью, вследствие чего нефтегазонасыщенные пласты содержат некоторое количество воды, называемой остаточной. Относительное содержание этой воды в пустотном пространстве тем больше, чем меньше раз-

мер пустот и проницаемость коллектора. Остаточная вода содержится в залежах в виде молекулярно-связанной пленки на стенах пор, каверн, трещин, в изолированных пустотах и в капиллярно-связанном состоянии в непроточной части пустот. Для нефтегазопромысловой геологии интерес представляет остаточная вода, содержащаяся в открытом пустотном пространстве. Определение коэффициентов нефтегазоводонасыщенности занимает большое место в промысловой геологии.

Коэффициентом нефтенасыщенности Кн (газонасыщенности Кг) называется отношение объема нефти (газа), содержащейся в открытом пустотном пространстве, к суммарному объему пустотного пространства.

Коэффициентом водонасыщенности Кв коллектора, содержащего нефть или газ, называется отношение объема остаточной воды, содержащейся в открытом пустотном пространстве, к суммарному объему открытых пустот.Иногда Кн, Кг, К, выражают в процентах от объема открытого пустотного пространства.

При подсчете запасов нефти и газа и проектировании разработки требуется знание коэффициентов нефте- и газонасыщенности. Однако и прямое (по образцам нефтегазонасыщенных пород), и косвенное (по геофизическим данным) определение этих коэффициентов не дает надежных результатов. По керну нефтегазоносность не может быть определена потому, что при выбуривании образца часть нефти или газа вытесняется из него фильтратом промывочной жидкости; при подъеме образца на поверхность вследствие снижения давления в нем от пластового до атмосферного происходит увеличение объема нефти и газа, и они вытекают из образца; кроме того, при снижении давления из нефти выделяется растворенный в ней газ, который также вытесняет некоторую часть нефти. Значение коэффициента водонасыщенности пород в

меньшей степени подвержено влиянию внешних факторов, и при соблюдении определенных условий отбора образцов и проведения опытов оно устанавливается с удовлетворительной точностью. Поэтому значения коэффициентов нефтегазонасыщенности обычно находят, определив содержание остаточной воды, из соотношений (V.7) и (V.8):

Коэффициент водонасыщенности может быть наиболее надежно определен, если керн выбуривается при использова нии промывочной жидкости, не проникающей в пласт, например, приготовленной на известково-битумной или нефтяной основе. Количество остаточной воды может быть определено спо-

собами экстрагирования образцов в приборе Дина и Старка или в приборах С.Л. Закса. В обоих случаях взвешенный образец помещают в емкость, где он обрабатывается кипящим растворителем нефти. При кипении вода испаряется вместе с растворителем, попадая в холодильник, где и конденсируется. Так как вода тяжелее применяемых углеводородных растворителей, то она накапливается в нижней части градуированной ловушки. Быстро и просто количество связанной воды определяется методом центри фугирования. Образец, полностью насыщенный водой, помещают в центрифугу, в которой под действием центробежных сил вода выбрасывается в градуированную ловушку. Вытеснению воды из породы пре-

пятствуют капиллярные силы. Поэтому по мере увеличения частоты вращения ротора центрифуги вода вытесняется сначала из более крупных пустот, в которых силы слабее, а затем из все более и более мелких.

По геофизическим данным коэффициент нефтегазонасыщенности определяют через величину Рн, называемую параметром нефтегазонасыщения или коэффициентом увеличения сопротивления:

где рн.п — удельное электрическое сопротивление продуктивного пласта, пустоты которого заполнены нефтью или газом и остаточной водой; рвп — удельное электрическое сопротивление этого же пласта при 100 %-ном заполнении его пор водой с теми же значениями минерализации и температуры. Между параметрами нефтегазонасыщения и коэффициентом водонасыщения существует зависимость где п — показатель, зависящий от литологической характеристики пород и свойств нефти и воды; он может меняться в диапазоне 1,73 — 4,33, в большинстве случаев принимается

равным 2. Изучение водонасыщенности имеет большое значение не только для количественной оценки нефтегазонасыщенности. Важно выяснить и качественную роль водонасыщенности. Содержание в породах-коллекторах остаточной воды и ее состояние оказывают большое влияние на процессы вытеснения Угле водородов из пустотного объема при разработке залежей. Количество, состав и состояние остаточной воды связаны со свойствами поверхности минерального вещества, с характером пустот, со свойствами нефти, газа и самой воды. Породы-коллекторы даже в пределах одной залежи могут отличаться по характеру смачиваемости. Остаточная вода может в виде тонкой пленки покрывать всю поверхность пустот. Такую поверхность называют гидрофильной (хорошо смачиваемой водой). В других случаях поверхности зерен могут не смачиваться водой вследствие адсорбции на них пленки нефти. Такие породы называют гидро фобизированными нефтью или гидрофобными.

По мнению ряда исследователей, к гидрофобным следует относить породы, содержащие менее 10 % остаточной воды (Кв < 0,1). При значении коэффициента водонасыщенности более 0,1 породы считают гидрофильными. Необходимость различать гидрофильные и гидрофобные коллекторы обусловлена тем, что в первых процесс вытеснения нефти из пустотного пространства при прочих равных условиях и высокой проницаемости протекает значительно легче, чем во вторых. В гидрофильном коллекторе вся нефть находится в подвижном состоянии и при ее вытеснении как бы скользит по пленке воды.

В гидрофобном коллекторе часть нефти, образуя пленку на стенках пустот, не участвует в процессе движения, вследствие чего увеличиваются потери нефти в пласте. Эти особенности следует изучать и учитывать при подсчете запасов и проектировании разработки, определяя величину конечного

нефтеизвлечения при возможных системах разработки. В зависимости от условий формирования залежей, характеристики пород-коллекторов, их емкостного объема и фильтрационных свойств, характера смачиваемости и других параметров, значение начальной нефтегазонасыщенности продуктивных пластов находится в пределах 97 — 50 % при соответствующей начальной водонасыщенности 3 — 50 %.

экз. билета 7 1. Эксплуатационные объекты, их выделение в разрезе месторождения.

Эксплуатационным объектом, или объектом разработки, называют один или несколько продуктивных

пластов месторождения, которые выделяют исходя из геолого-технических условий и экономических соображений для совместной разработки одной серией скважин.При наличии в разрезе месторождения одного продуктивного пласта залежь нефти является единственным объект разработки. В этом случае и месторождение, и эксплуатационный объект называют однопластовым.На многопластовых месторождениях до 40-х годов каждый продуктивный пласт обычно служил объектом разработки —базисным или возвратным. Базисные объекты разрабатывались определенными системами пробуренных на них скважин. Возвратные продолжительное время находились в консервации и затем вводились в разработку скважинами, выполнявшими свое назначение по базисному объекту.

При внедрении заводнения, позволяющего управлять процессом разработки, стало правилом на многопластовом месторождении выделять не только однопластовые эксплуатационные объекты, но и объекты, состоящие из двух-трех пластов и иногда более. При этом понятие "возвратный объект"

ушло в прошлое. При выделении на месторождении нескольких объектов разработки на каждый из них, как правило, проектируется самостоятельная система скважин. Решение вопроса о рациональном группировании пластов в эксплуатационные объекты на многопластовом месторождении связано с определенными трудностями, так как в ряде случаев могут быть предложены разные варианты. В то же

время каждый вариант имеет положительные и отрицательные моменты. Решение о выделении минимального количества объектов (т.е. о расчленении на крупные объекты) позволяет разрабатывать месторождение меньшим количеством скважин и тем самым обеспечивать весомую экономию капи-

тальных вложений. Однако при этом суммарная продуктивность скважин может оказаться несколько меньшей, чем сумма значений продуктивности пластов при их раздельной разработке, затрудняется управление процессом разработки. Так, при наличии в разрезе месторождения четырех пример-

но одинаковых продуктивных пластов могут быть рассмотрены следующие варианты: выделение каждого пласта в самостоятельный объект (рис. 61, а), выделение двух двухплас товых объектов (рис. 61, б), объединение всех пластов в один объект (рис. 61).

При значительной неоднородности пластов-коллекторов и существенных различиях их толщины и

проницаемости количество возможных вариантов может быть увеличено (например, объединение в один объект двух средних пластов, в другой — верхнего и нижнего пластов; выделение однопластового и трехпластового объектов). Могут быть выбраны также промежуточные варианты, при которых в добывающих скважинах продуктивные пласты перфорируют совместно, а нагнетание воды проводят раздельно в пары пластов (см. рис. 69, ,,) или даже в каждый пласт в отдельности. Таким образом, выделение объектов разработки является оптимизационной задачей. Обоснование выделения эксплуатационных объектов обычно проводят в два этапа. На первом этапе рассматривают геолого-физические особенности, как благоприятствующие, так и препятствующие объединению пластов для совме-

стной разработки; на втором этапе этот вопрос решают с учетом технологических и экономических факторов. При выделении объектов разработки, состоящих из нескольких пластов, необходимо, чтобы выполнялись следующие геологические требования: объединяемые для совместной разработки пласты должны принадлежать единому этажу нефтеносности, что предопределяет их расположение на близких глубинах, небольшие различия в начальном пластовом давлении и температуре и т.д.;

природные режимы пластов должны быть одинаковыми; пласты должны быть идентичными по литологии и типу коллекторов во избежание различий в характере перемещения жидкости в пластах с разной структурой пустотного пространства, в степени разрушения прискважинной зоны пластов при эксплуатации скважин и т.д.; желательно, чтобы пласты мало различались по проницаемости и неоднородности, что способствует приемистости всех пластов в нагнетательных скважинах и притоку нефти из всех пластов при общем забойном давлении; между выделяемыми эксплуатационными объектами должны иметься надежные разделы из непроницаемых пород во избежание перетоков жидкости между соседними по разрезу

объектами; вязкость нефти в пластовых условиях должна быть в объединяемых пластах одинаковой, что обеспечивает общие закономерности процесса вытеснения нефти; нефть пластов должна иметь одинаковые товарные качества во избежание смеси нефтей, требующих разной технологии промысловой подготовки и переработки (например, нельзя объединять пласты с сернистой и бессернистой нефтью); эксплуатационный объект должен иметь значительные запасы на единицу своей площади (удельные запасы) для обеспечения продолжительной эксплуатации скважин. Для некоторых месторождений учета геологических требований оказывается достаточно для решения вопроса о выделении объектов разработки. В случаях, когда этого недостаточно, выполняют второй этап исследований: оценку динамики годовых технологических показателей разработки для каждого из возможных вариантов выделения эксплуатационных объектов — по каждому объекту в отдельности и по месторождению в целом; оценку общего количества скважин, добычи нефти и объемов отбираемой воды; расчет по вариантам экономических показателей — в соответствии с требованиями рыночной экономики; выбор варианта с максимальными показателями годовойдобычи нефти по месторождению при наибольшем экономическом эффекте и лучшем использовании недр.

Расчеты технологических и экономических показателей разных вариантов проводят с учетом понижающего влияния объединения высокопродуктивных пластов на коэффициент продуктивности скважин. В качестве количественного показателя для оценки последствий объединения пластов в объекты в разном сочетании В.Г. Каналин и другие исследователи рекомендуют использовать коэффициент продуктивности скважин. На величину этого коэффициента влияют количество пластов, объединяемых в эксплуатационный объект, и

степень различия в геолого-промысловых характеристиках пластов. Значения коэффициентов продуктивности пластов при раздельной их эксплуатации определяют по соответствующим параметрам этих пластов. На выбор оптимального варианта выделения объекта заметное влияние может оказывать глубина залегания продуктивных пластов. Поскольку при большой глубине резко возрастает стоимость бурения скважин, оптимальному варианту при большой глубине может соответствовать меньшее коли-

чество выделяемых объектов, чем при прочих равных условиях, но при небольшой глубине. На выбор объектов могут оказывать влияние также другие условия освоения месторождения (расположение месторождения в пределах шельфа, в сложных поверхностных условиях и др.). Опыт разработки многопластовых высокопродуктивных месторождений и развитие теории проектирования разработки позволяют все более обоснованно подходить к выделению эксплуатационных объектов на новых месторождениях и вносить коррективы в ранее принятые решения по уже разрабатываемым месторождениям. В целом развитие представлений по этому вопросу показало, что мнение специалистов о возможности выделения на высокопродуктивных месторождениях крупных многопластовых объектов разработки, господствовавшее в 40 —60-х годах, было излишне оптимистичным. Если раньше часто принимались решения о выделении эксплуатационных объектов с суммарной нефтенасыщенной толщиной до 40 — 50 м и более, содержащих до 5—10 и более пластов различной толщины, то в настоящее время

обычно выделяют объекты с толщиной не более 20 — 30 м и с меньшим количеством пластов. На целом ряде месторождений страны, где вначале были выделены чрезмерно крупные объекты, что привело к недостаточно полному и активному включению их в разработку, позже пришлось бурить значительное количество скважин с раздельным вскрытием верхней и нижней (а иногда верхней, средней и нижней) частей первоначального объекта. При разработке многопластового месторождения проектные

решения по системам разработки каждого из эксплуатационных объектов должны приниматься с учетом наличия других объектов. Так, при сравнительно небольшой разнице в глубинах залегания пластов проектные скважины всех объектов целесообразно бурить до подошвы самого нижнего пласта. Это

дает возможность на поздних стадиях разработки переводить обводнившиеся скважины одного объекта на другой и таким образом улучшить их выработку. При этом появляется также возможность контроля за выработкой пластов (неперфорированных) одного объекта в скважинах другого нейтронными методами. Скважины одного объекта следует располагать со смещением на площади относительно скважин другого объекта. При проектировании систем разработки соседних по разрезу объектов необходимо принимать во внимание, что наличие между ними непроницаемого раздела не исключает случаев перетока жидкости между объектами на локальных участках, где этот раздел отсутствует, а также по заколонному пространству скважин с некачественным цементированием. Перетоки наиболее возможны на участках, где между сосед-

ними объектами создаются большие перепады давления. Для предотвращения перетоков рекомендуется располагать территориально в одних местах ряды нагнетательных и ряды добывающих скважин соседних объектов. При этом области высокого давления (зоны нагнетания воды) и области низкого давления (зоны отбора) соседних объектов будут совмещены в плане и значения пластового давления в эксплуатационных

объектах в каждой точке месторождения будут различаться незначительно (рис. 62, а). В таких условиях перетоки жидкости между объектами практически исключаются. При несоблюдении этой рекомендации области высокого давления одного объекта могут оказаться совмещенными в плане с областями низкого давления другого объекта (рис. 62, б). Предпосылки для перетоков жидкости из нижнего объекта в верхний возникают на участках, где расположены ряды нагнетательных скважин нижнего объекта, а из верхнего в

нижний — на участках, где расположены нагнетательные скважины верхнего объекта. Из-за отсутствия опыта разработки в начале применения заводнения и несоблюдения рекомендуемых условий перетоки жидкости между объектами были допущены на ряде участков первых разрабатываемых с заводнением месторождений —Туймазинском, Шкаповском и др. Для прекращения перетоков потребовалось проведение ряда трудоемких технологических мероприятий.

При выделении в разрезе месторождения двух или нескольких эксплуатационных объектов в проектном документе устанавливают последовательность их освоения. Следует различать три возможные ситуации в зависимости от сравнительной продуктивности объектов.

1. В условиях примерной равноценности объектов целесообразно осуществлять их одновременное разбуривание и освоение. Это устраняет необходимость неоднократного перемещения буровых мощностей по площади месторождения.

2. При значительной разнице продуктивности объектов, но при условии, что разработка малопродуктивных объектов самостоятельной серией скважин тем не менее рентабельна, возможно последовательное освоение объектов, начиная с наиболее продуктивного.

3. Высокоэкономичным путем разработки эксплуатационных объектов с разной продуктивностью может быть применение метода одновременно-раздельной эксплуатации объектов в скважинах. Метод предусматривает бурение на два (возможно, и на три) объекта единой серии скважин и установку во всех нагнетательных и добывающих скважинах специального оборудования, которое обеспечивает раздель

ную эксплуатацию объектов, учет добываемой продукции и нагнетаемой воды каждого объекта при забойных давлениях, соответствующих их продуктивности и приемистости. При разработке многопластовых месторождений с низкой продуктивностью всех пластов (такие месторождения в по-

следнее время нередко вводятся в разработку) выделение нескольких объектов разработки не обеспечивает достаточно высоких дебитов скважин и оказывается нерентабельным. По таким месторождениям целесообразно более решительно идти на объединение пластов в объекты разработки. При этом необходимо изыскивать надежные способы раздельного определения показателей работы (дебитов, обводненности,

давления и др.) каждого из пластов, методы изоляции пластов, обводняющихся ранее других. При разработке залежей нефти, приуроченных к крупным карбонатным массивам толщиной в несколько сотен метров, обычно трещиноватым, практикуют условное расчленение их на этажи разработки с последовательной выработкой их снизу вверх — единой серией скважин или бурением самостоятельных скважин на каждый из этажей (в последнем случае фактически выделяется несколько объектов разработки). 2. Вскрытие и освоение продуктивных пластов.

В процессе вскрытия и разбуривания продуктивного пласта недостаточно внимания уделяется технологическим факторам, до минимума снижающим отрицательное воздействие не только потому, что современная технология вращательного бурения не имеет пока достаточно средств для управления процессами в призабойной зоне, но и потому, что не учитывается большое значение этого процесса для последующей эксплуатации продуктивного пласта.

В соответствии с едиными правилами буровых работ столб бурового раствора в скважине должен создавать давление, превышающее пластовое на 1,5–3,5 МПа (в зависимости от глубины). В реальных условиях давление на продуктивные пласты существенно больше из-за переутяжеления бурового раствора, гидравлических сопротивлений при его движении, а также движения вниз бурового инструмента.

Нечетко определены понятия качества работ в бурении и заканчивании скважин. Проблема качества строительства скважин (особенно горизонтальных) стоит очень остро. Интегральная характеристика качества скважин – получаемый полезный эффект, т.е. добыча углеводородов на рубль затрат при строительстве скважин, – за последние 10 лет сократилась более чем в 2 раза. Это объясняется не только необходимостью освоения новых, более труднодоступных и сложно построенных месторождений. Результаты анализа показывают, что при условии полного использования возможностей продуктивных пластов (если бы добывающие способности скважин не ограничивались возможностями применяемой технологии их строительства) добыча нефти и газа на одну скважину была бы в 2–4 раза больше в зависимости от условий – это один из главных путей увеличения эффективности нефтегазодобывающей промышленности. Методы вскрытия пласта в зависимости от пластового давления, степени насыщенности пласта нефтью, степени дренирования и других факторов могут быть различными, но все они должны удовлетворять следующим основным требованиям.

1. При вскрытии пласта с высоким давлением должна быть предотвращена возможность открытого фонтанирования скважины.

2. При вскрытии пласта должны быть сохранены на высоком уровне природные фильтрационные свойства пород призабойной зоны. Если проницаемость пород мала, должны быть приняты меры по улучшению фильтрационных свойств призабойной зоны скважины.

3. Должны быть обеспечены соответствующие интервалы вскрытия пласта, гарантирующие длительную безводную эксплуатацию скважин и максимальное облегчение притока нефти к забою.

При вскрытии продуктивных пластов с низким пластовым давлением особенно тщательно следует выбирать буровой раствор, поскольку может происходить интенсивное поглощение глинистого раствора пластом, сопровождающееся оттеснением нефти от забоя скважины и значительным ухудшением фильтрационных свойств пород призабойной зоны. Для вскрытия продуктивных пластов с низким пластовым давлением применяют специальные буровые растворы на нефтяной основе, эмульсионные буровые растворы, глинистые растворы с добавками поверхностно-активных веществ, аэрированные жидкости и др.

3. Компрессорная добыча нефти, системы подъемников. Компрессорная добыча нефти

        способ подъёма нефти из пласта на поверхность за счёт энергии сжатого природного газа или воздуха, подаваемого от компрессора в скважину. Отсюда название способа. Установка для осуществления этого способа называется Газлифт (при воздухе — эрлифт). Принцип разгазирования столба жидкости для её подъёма на поверхность впервые был использован в Венгрии в 18 в. для откачки эрлифтом воды из обводнённых шахт. В 60-е гг. 19 в. компрессорная эрлифтная нефтедобыча применялась в небольших масштабах на нефтепромыслах Пенсильвании (США). Впервые промышленное применение в больших масштабах К. д. н. получила в 1894 на бакинских промыслах, по предложению В. Г. Шухова.

Состоит из вертикальной трубы, в нижнюю часть которой, опущенной в жидкость, вводят газ под давлением. Образовавшаяся в трубе эмульсия (смесь жидкости и пузырьков) будет подниматься благодаря разности удельных масс эмульсии и жидкости. Естественно, что эмульсия тем легче, чем в ней больше пузырьков.

Газлифт (эрлифт) — система, состоящая из эксплуатационной (обсадной) колонны труб и опущенных в нее НКТ, в которой подъем жидкости осуществляется с помощью сжатого газа (воздуха). Иногда эту систему называют газовый (воздушный) подъемник. Способ эксплуатации скважин при этом называется газлифтным.  По схеме подачи от вида источника рабочего агента — газа (воздуха) различают компрессорный и безкомпрессорный газлифт, а по схеме действия — непрерывный и периодический газлифт. 

В затрубное пространство нагнетают газ высокого давления, в результате чего уровень жидкости в нем будет понижаться, а в НКТ — повышаться. Когда уровень жидкости понизится до нижнего конца НКТ, сжатый газ начнет поступать в НКТ и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси становится ниже плотности жидкости, поступающей из пласта, а уровень в НКТ будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче газа в скважину жидкость (смесь) поднимается до устья и изливается на поверхность, а из пласта постоянно поступает в скважину новая порция жидкости. Дебит газлифтной скважины зависит от количества и давления нагнетаемого газа, глубины погружения НКТ в жидкость, их диаметра, вязкости жидкости и т.п.

При однорядном подъемнике в скважину спускают один ряд НКТ. Сжатый газ нагнетается в кольцевое пространство между обсадной колонной и насосно-компрессорными трубами, а газожидкостная смесь поднимается по НКТ, или газ нагнетается по насосно-компрессорным трубам, а газожидкостная смесь поднимается по кольцевому пространству. В первом случае имеем однорядный подъемник кольцевой системы (см. рис. 13.2,а), а во втором — однорядный подъемник центральной системы (см. рис. 13.2,б).  При двухрядном подъемнике в скважину спускают два ряда концентрически расположенных труб. Если сжатый газ направляется в кольцевое пространство между двумя колоннами НКТ, а газожидкостная смесь поднимается по внутренним подъемным трубам, то такой подъемник называется двухрядным кольцевой системы (см. рис. 13.2,в). Наружный ряд насосно-компрессорных труб обычно спускают до фильтра скважины.  При двухрядном ступенчатом подъемнике кольцевой системы в скважину спускают два ряда насосно-компрессорных труб, один из которых (наружный ряд) ступенчатый; в верхней части — трубы большего диаметра, а в нижней — меньшего диаметра. Сжатый газ нагнетают в кольцевое пространство между внутренним и наружным рядами НКТ, а газожидкостная смесь поднимается по внутреннему ряду. 

экз. билета 8 1. Разработка отдельного продуктивного пласта: темп разработки, порядок разбуривания, методы воздействия на пласт.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]