
- •1. Структура программного обеспечения вычислительной системы.
- •2. Назначение операционных систем. Слои и точки зрения на вычислительную систему.
- •3. Сервисы операционных систем.
- •4 Понятие ресурса. Классификация ресурсов.
- •5 Ядро операционной системы. Требования к ядру.
- •Модульное ядро
- •Микроядро
- •Экзоядро
- •Наноядро
- •Гибридное ядро
- •6 Эволюция операционных систем. Последовательная обработка данных.
- •7 Эволюция операционных систем. Простые пакетные системы. Мониторы, jcl.
- •10 Эволюция операционных систем. Многозадачные системы с разделением времени. Алгоритм планирования на основе абсолютного приоритета (с вытеснением).
- •11. Проблемы классификации операционных систем.
- •Классификация ос
- •12. Управление выполнением приложений. Понятия процесса и потока
- •13 Процесс. Элементы процесса. Pcb. Элементы процесса в Windows nt.
- •14 Создание и завершение процессов. Этапы создания процесса в Windows nt.
- •Контекст и дескриптор процесса
- •15.Состояния процессов.
- •21. Многопоточность. Однопоточная и многопоточная модели процессов.
- •22. Преимущества использования потоков.
- •23. Состояния потоков.
- •24. Структура потоков в Windows 2000.
- •25. Взаимодействие «клиент-сервер». Использование потоков на стороне клиента для вызова удалённо-вызываемых процедур: однопоточный и многопоточный клиенты.
- •26. Взаимодействие «клиент-сервер». Использование потоков на стороне сервера: однопоточный сервер, многопоточный сервер, многопоточный сервер на базе пула потоков.
- •27.Реализация потоков в системе. Потоки на уровне пользователя.
- •28.Реализация потоков в системе. Потоки на уровне ядра.
- •29.Реализация потоков в системе. Комбинированный подход
- •31. Кластеры. Системное программное обеспечение кластеров. Типы кластеров.
- •32. Многопроцессорные системы. Соглашения относительно многопроцессорных систем. Диспетчеризация потоков на smp.
- •33.Диспетчеризация потоков в Windows 2000 при однопроцессорной и многопроцессорной конфигурации.
- •34. Модели параллелизма. Примеры.
- •35.Монолитная архитектура операционной системы. Преимущества и недостатки
- •Монолитные системы
- •36. Микроядерная архитектура операционной системы.
- •37. Архитектура операционных систем семейства Windows nt.
- •38.Архитектура операционной системы Linux.
- •39.Архитектура операционной системы qnx.
- •40. Процессы и синхронизация. Основные понятия: состояние, действие, история. Независимость параллельных процессов.
- •41. Разделяемый и критический ресурс. Доказательство корректности параллельных алгоритмах Примеры.
- •42.Понятие синхронизации. Виды синхронизации.
- •43. Мелкомодульная неделимость. Условие «не больше одного».
- •44.Задача критической секции.
- •45.Активные блокировки. Алгоритм «Проверить-установить». Недостатки.
- •46.Активные блокировки. Алгоритм «Проверить-проверить-установить».
- •47. Реализация взаимоисключения. Аппаратная поддержка. Реализация алгоритма «Проверить-установить» на x86 с использованием инструкции xchg.
- •48.Спин-блокировки в Windows 2000. Назначение спин-блокировок. Спин-блокировки очередями.
- •49.Задача критической секции. Решения со справедливой стратегией.
- •50.Семафоры Дейкстры. Псевдокод реализации семафора. Бинарные семафоры.
- •51.Реализация семафора средствами Windows api.
- •52.Семафорные механизмы в Windows api.
- •53.Задача «производитель/потребитель». Реализация на бесконечном буфере.
- •54.Задача «читатели-писатели».
- •55.Задача «обедающие философы». Заговоры и голодовка. Решения.
- •56. Мониторы. Мониторы с сигналами.
- •57.Мониторы. Мониторы с оповещением и широковещанием.
- •58.Принципы взаимного блокирования. Условия возникновения взаимоблокировок.
- •59. Управление памятью. Требования к управлению памятью.
- •60.Управление памятью. Распределение памяти. Фиксированное распределение. Алгоритм размещения при фиксированном распределении.
- •61.Управление памятью. Распределение памяти. Динамическое распределение. Алгоритмы размещения при динамическом распределении.
- •Не с лекции: Распределение памяти разделами переменной величины
- •62.Управление памятью. Перемещение. Типы адресов. Аппаратная поддержка перемещения.
- •63.Управление памятью. Простая страничная организация. Трансляция логических адресов. Страничная организация
- •Страничное распределение
- •64.Управление памятью. Простая сегментная организация. Трансляция логических адресов.
- •65. Виртуальная память (вп). Основные идеи. Выполнение программы с использованием вп. Преимущества вп. Поддержка функционирования вп.
- •66. Виртуальная память (вп). Типы памяти. Виртуальное адресное пространство. Пробуксовка (Thrashing). Принцип локализации.
- •67. Страничная организация вп. Биты таблицы страниц. Многоуровневая адресация. Страничная адресация в 80386.
- •68.Ассоциативный буфер трансляции (tlb). Функционирование tlb.
- •69.Размеры страниц. Влияние размеров страниц на поведение процесса.
- •70. Сегментная вп. Таблицы сегментов. Трансляция при сегментной организации.
- •1)Сегментная схема функционирования вп
- •71.Сегментно-страничная организация. Трансляция адресов при сегментно-страничной организации в 80386.
- •72.Задачи управления памятью. Стратегии выборки.
- •73.Задачи управления памятью. Стратегии размещения.
- •74.Задачи управления памятью. Стратегии замещения.
- •75.Задачи управления памятью. Буферизация страниц. Буферизация страниц в Windows 2000.
- •76.Управление резидентным множеством. Фиксированное распределение, локальное замещение.
- •77.Управление резидентным множеством. Переменное распределение, глобальное замещение.
- •78.Управление резидентным множеством. Переменное распределение, локальное замещение.
- •79.Управление резидентным множеством. Стратегия рабочего множества. Управление рабочим множеством в Windows 2000.
- •80.Архитектура компьютерной системы. Подключение устройств к магистрали. Иерархия магистралей.
- •83.Вызов сервисов операционной системы с использованием прерываний. Вызов сервисов в Windows nt.
- •84.Вызов сервисов операционной системы с использованием инструкций мп Pentium II sysenter/sysexit. Вызов сервисов в Windows 2000/xp/Server 2003.
- •85.Сложность систем ввода-вывода. Модуль (контроллер) ввода-вывода. Структура и функции модуля ввода-вывода.
- •86.Решения по организации ввода-вывода: программируемый (pio), управляемый прерываниями, прямой доступ к памяти (dma).
- •87.Ввод-вывод в операционных системах. Требования к эффективности и универсальности.
- •88.Подсистема ввода-вывода в операционной системе. Обзор функций.
- •89.Подсистема ввода-вывода. Организация параллельной работы устройств ввода-вывода и процессора.
- •90.Подсистема ввода-вывода. Согласование скоростей обмена. Буферизация в операциях ввода-вывода.
- •91. Подсистема ввода-вывода. Кэширование данных: кэширование на основе логических и виртуальных блоков.
- •93.Синхронный и асинхронный ввод-вывод. Средства поддержки асинхронного ввода-вывода в Windows api.
- •94.Подсистема ввода-вывода. Поддержка различных файловых систем. Ifs в системах Windows nt.
- •95.Файловые системы fat и ntfs. Отказоустойчивость в ntfs.
- •96.Отказоустойчивые дисковые массивы raid. Raid 0 6.
- •97.Многослойная модель подсистемы ввода-вывода. Многослойная модель подсистемы ввода-вывода в Windows nt.
- •12. Общие принципы построения операционных систем.
78.Управление резидентным множеством. Переменное распределение, локальное замещение.
79.Управление резидентным множеством. Стратегия рабочего множества. Управление рабочим множеством в Windows 2000.
Доступ к ОП осуществляется посредством адресации. При одновременном разделении в память загружается сразу несколько процессов, при большом количестве загруженных процессов неизбежны потери времени из-за подкачек недостающих сегментов. При попеременном разделении процесс полностью помещается в ОП, тогда уменьшается пропускная способность системы, то есть способ разделения зависит от разработчика ОС и от объема памяти.
Глобальное управление ОП рассматривает все страницы ОП независимо от их принадлежности какому-либо процессу.
Локальное управление рассматривает все страницы ОП с учетом их принадлежности какому-либо процессу.
Фиксированное управление: процессу на время жизни выделяется определенное число страниц ОП.
Переменное управление: всем процессам в начале их жизни выделяется определенный объем ОП. Впоследствии процессы могут сами изменить максимальные и минимальные размеры этого объема.
Максимальные и минимальные размеры объема ОП, выделенного процессу, называется рабочим множеством процесса.
Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.
После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, то есть соответствующая физическая страница объявляется свободной.
Наблюдения показали, что даже если Т равно времени выполнения всей работы, то размер рабочего множества часто существенно меньше, чем общее число страниц программы. Таким образом, если ОС может определить рабочие множества исполняющихся задач, то для предотвращения пробуксовки достаточно планировать на выполнение только такое количество задач, чтобы сумма их рабочих множеств не превышала возможности системы.
Стратегия рабочего множества (working set strategy):
Управление рабочими множествами (наборами) в Windows 2000:
Диспетчер рабочих наборов
Диспетчер настройки баланса
Все процессы начинают жизненный цикл с одинаковыми максимальными и минимальными размерами рабочего набора (345 и 50 страниц соответственно для систем с большим объёмом памяти)
При возникновении страничного отказа система, система проверяет лимиты рабочего набора процесса и объём свободной памяти.
Если условия позволяют диспетчер памяти разрешает процессу увеличить размер рабочего множества до максимума и даже превысить его, если достаточно свободных страниц.
При нехватке памяти система заменяет страницы в рабочем наборе.
При слишком частой генерации модифицированных страниц вызывается диспетчер рабочих наборов, который инициирует автоматическое усечение рабочего набора для увеличения объёма свободной памяти.
Подсчитывает, сколько страниц при необходимости можно изъять из рабочего набора процессов, если их рабочий набор превышает минимальный.
Оптимально упорядочивает список процессов – кандидатов на усечение рабочего набора.
Если с момента усечения рабочего набора процесс вызовет определённое количество страничных отказов, он исключается из числа кандидатов на усечение до следующего цикла усечения (через 6 секунд)
Для усечения рабочего набора используется часовой алгоритм для определения исключаемых страниц (начиная с Windows XP/2003 используется единый алгоритм для много и однопроцессорных систем)