Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1Основы теории электрических и магнитных цепей.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.16 Mб
Скачать

14. Мощность двухполюсника в синусоидальном режиме

Рис. 14.1.

Рассмотрим двухполюсник в синусоидальном режиме. Будем иметь в виду потребляемую мощность, поэтому стрелки напряжения и тока направим в одну сторону (рис. 14.1)

Пусть .

Вычислим активную мощность, потребляемую двухполюсником (здесь – период u(t) и i(t)):

так как .

Учитывая, что , где U и I – действующие значения напряжения и тока,  – сдвиг фаз между напряжением и током, получим:

.

Число называется коэффициентом мощности. При использовании мощных электромагнитных устройств стараются увеличить , сделать его как можно ближе к единице, потому что при достигается максимальная активная мощность, возможная при заданных значениях напряжения и тока. Эту мощность называют полной мощностью и обозначают буквой S :

.

Полная мощность измеряется в вольт-амперах: ВА.

С другой стороны, при заданном напряжении и заданной активной мощности условие соответствует минимальному значению тока в линии электропередач, соединяющей источник электроэнергии с нагрузкой. Это обеспечивает минимум потерь энергии в проводах линии.

Очень важную роль в энергетике играют трансформаторы и асинхронные электродвигатели. Они имеют максимальный при максимальной нагрузке. Поэтому полная загрузка используемого оборудования представляет один из основных способов повышения коэффициента мощности. Второй способ – применение компенсаторов реактивной мощности (конденсаторов и синхронных электрических машин).

Реактивная мощность обозначается буквой Q и определяется формулой

.

Реактивная мощность измеряется в вольт-амперах реактивных: ВАр. Она может быть измерена приборами. По значениям активной и реактивной мощности можно судить о значении коэффициента мощности и об эффективности использования оборудования. Для стимулирования повышения тарифы на электроэнергию могут зависеть от значения реактивной мощности.

Выражения для полной, активной и реактивной мощности можно получить также из комплексов напряжения и тока двухполюсника. При этом вводится понятие комплексной мощности : ,

где – число, комплексно сопряженное к комплексу тока.

Рис. 14.2.

Получим связь :

,

.

Итак, .

Полученные зависимости изображают на комплексной плоскости в виде “треугольника мощностей” (рис. 14.2).

15. Последовательное соединение резистора, катушки индуктивности и конденсатора.

Рис. 15.1.

Рассмотрим двухполюсник, состоящий из последовательно включенных резистора, катушки индуктивности и конденсатора (рис. 15.1). Он подключен к источнику синусоидального напряжения, амплитуда которого постоянна.

Найдем зависимость тока в цепи и напряжений на элементах R, L, C от частоты.

По второму закону Кирхгофа .

Согласно уравнениям элементов

, , ,

откуда ,

. (15.1)

Мы нашли комплекс тока. Попутно в знаменателе мы получили комплексное сопротивление двухполюсника , активное сопротивление двухполюсника и реактивное сопротивления двухполюсника .

Рис. 15.2.

Вычислив модули обеих частей уравнения 15.1, получим связь действующих значений напряжения и тока двухполюсника:

. (15.2)

В знаменателе формулы 15.2 находится полное сопротивление двухполюсника . График зависимости тока от частоты показан на рис. 15.2.

Фазовым резонансом двухполюсника называется такой режим, при котором ток и напряжение двухполюсника совпадают по фазе: . При этом реактивное сопротивление и реактивная проводимость двухполюсника также равны нулю.

Резонансом напряжений двухполюсника называется режим, при котором максимально компенсируются напряжения элементов цепи. Полное сопротивление двухполюсника при этом минимально: z = min.

Резонансом токов двухполюсника называется режим, при котором максимально компенсируются токи элементов цепи. Полное сопротивление двухполюсника при этом максимально: z = max.

Частотным резонансом двухполюсника называется режим, при котором частота источника колебаний совпадает с одной из частот собственных колебаний двухполюсника. Собственные колебания происходят при переходных процессах (см. п. 20).

Для последовательного соединения резистора, катушки индуктивности и конденсатора фазовый резонанс совпадает с резонансом напряжений. Резонансная частота определяется по формуле

,

которая выводится из равенства нулю реактивного сопротивления: .

Зависимость действующих значений напряжений от частоты для последовательного соединения R, L, C показана на рис. 15.3. Выражения для вычисления этих напряжений получаются умножением действующего значения тока (формула 15.2) на полные сопротивления элементов: , , (см. п. 12).

Построим векторную диаграмму тока и напряжений (рис. 15.4, здесь показан случай UL > UC). Проще всего это сделать, если начальная фаза тока равна нулю: . Тогда вектор, изображающий комплекс тока, будет направлен под углом к действительной оси комплексной плоскости. Напряжение на резисторе совпадает по фазе с током, поэтому вектор, изображающий комплекс напряжения на резисторе, будет направлен в ту же сторону, что и вектор, изображающий комплекс тока.

Рис. 15.3.

Рис. 15.4.

Рис. 15.5.

Напряжение на катушке индуктивности опережает по фазе ток на угол , поэтому вектор, изображающий комплекс напряжения на катушке индуктивности, будет направлен под углом к вектору, изображающему комплекс тока. Напряжение на конденсаторе отстает по фазе от тока на угол , поэтому вектор, изображающий комплекс напряжения на конденсаторе, будет направлен под углом – к вектору, изображающему комплекс тока. Вектор, изображающий комплекс приложенного напряжения, будет равен сумме векторов, изображающих комплексы напряжений на резисторе, конденсаторе и катушке. Длины всех векторов пропорциональны действующим значениям соответствующих величин. То есть, для того чтобы нарисовать векторы, нужно задать масштабы, например: в 1 сантиметре 20 вольт, в 1 сантиметре 5 ампер.

Векторная диаграмма для режима резонанса показана на рис. 15.5.

Вычислим отношение действующих значений напряжений на катушке индуктивности и на конденсаторе к действующему значению напряжения источника в режиме резонанса.

Учтем, что при резонансе напряжения на катушке и на конденсаторе полностью компенсируют друг друга (резонанс напряжений), и поэтому напряжение источника равно напряжению на резисторе: (рис. 15.5). Используем связь действующих значений тока и напряжения для резистора, катушки и конденсатора, а также формулу для резонансной частоты. Получим:

,

откуда .

Величину называют волновым сопротивлением колебательного контура и обозначают буквой . Отношение обозначают буквой Q и называют добротностью колебательного контура. Она определяет усилительные свойства контура на резонансной частоте. У хороших контуров добротность может быть порядка нескольких сотен, то есть в режиме резонанса напряжение на катушке и конденсаторе может быть в сотни раз больше приложенного к двухполюснику.

Резонанс часто применяется в электротехнике и электронике для усиления синусоидальных напряжений и токов, а также для выделения колебаний определенных частот из сложных колебаний. Однако, нежелательный резонанс в информационных электрических цепях приводит к возникновению и усилению помех, а в силовых цепях может привести к появлению опасно больших напряжений и токов.