- •1 Общие вопросы релейной защиты
- •1.1 Реле и их классификация
- •1.2 Основные требования к релейной защите
- •2.1. Виды повреждений и ненормальных режимов работы сетей
- •2.2. Оперативный ток и его источники
- •3.1. Первичные измерительные преобразователи в релейной
- •3.2. Трансформаторы тока
- •3.3. Схемы соединения измерительных трансформаторов тока и
- •3.3.1. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.2. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.3. Схема соединения трансформаторов тока в треугольник,
- •3.3.4. Двухфазная однорелейная схема соединения в неполный
- •3.3.5. Схема соединения трансформаторов тока в фильтр нулевой
- •3.4. Трансформаторы напряжения и схемы соединения их обмоток
- •Лекция 4 максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Максимальня токовая защита лэп
- •4.2.1. Принцип действия и селективности защиты.
- •4.2.2. Разновидности максимальной токовой защиты
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.3.1. Структурная схема трехфазной мтз
- •4.3.2. Схемы двухфазной защиты на постоянном оперативном токе
- •4.3.3. Однорелейная схема
- •Лекция 5
- •5.1. Выбор тока срабатывания мтз
- •5.2. Чувствительность мтз
- •5.3. Выдержки времени защиты
- •5.3.1. Ступень времени
- •5.3.2. Выбор времени действия мтз
- •5.3.3. Согласование мтз с зависимыми характеристиками
- •Лекция 6
- •6.1. Максимальная токовая защита с пуском от реле напряжения
- •6.2. Общая оценка и область применения мтз
- •Лекция 7 токовые отсечки
- •7.1. Принцип действия токовых отсечек
- •7.2. Схемы отсечек
- •7.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •7.3.1. Ток срабатывания отсечки
- •7.3.2. Время действия отсечки
- •7.4. Неселективные отсечки
- •7.5. Отсечки на линиях с двусторонним питанием
- •7.6. Отсечки с выдержкой времени
- •Лекция 8 токовая направленная защита
- •8.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •8.2. Функциональная схема и принцип действия токовой направленной защиты
- •8.3. Схемы направленной максимальной токовой
- •Лекция 9 дифференциальная защита линий
- •9.1. Принцип действия продольной дифференциальной защиты
- •9.2. Общие принципы выполнения продольной дифференциальной защиты линии
- •9.3. Дифференциальные реле с торможением
- •Лекция 10
- •10.1. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.2. Токовая поперечная дифференциальная защита
- •10.2.1. Принципы действия защиты
- •10.2.2. Мертвая зона защиты
- •10.2.3. Схема защиты
- •10.3. Оценка направленных поперечныз дифференциальных защит
- •Лекция 11 Дифференциально-фазная защита
- •Лекция 12 дистанционная защита
- •12.1. Назначение и принцип действия
- •12.2. Характеристики выдержки времени дистанционных защит
- •12.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •Лекция 13 структурная схема дистанционной защиты со ступенчатой характеристикой
- •Лекция 14 Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •14.1. Использование комплексной плоскости для изображения характеристик pc
- •14.2. Графическое изображение характеристик срабатывания реле
- •Лекция 15
- •15.1. Выбор уставок дистанционной защиты
- •15.2. Оценка дистанционной защиты
4.3.2. Схемы двухфазной защиты на постоянном оперативном токе
В случае, когда МТЗ должна действовать только при междуфазных КЗ, применяются двухфазные схемы с двумя или одним токовым реле.
Двухрелейная схема с независимой характеристикой (рис.4.5, а, б). Токовые цепи МТЗ выполняются по схеме неполной звезды. Достоинством двухрелейной схемы является то, что она, реагируя на все междуфазные КЗ, экономичнее трехфазной схемы (два ТТ и реле вместо трех).
К недостаткам двухфазной схемы с двумя реле нужно отнести ее меньшую чувствительность (по сравнению с трехфазной схемой) при двухфазных КЗ за трансформатором с соединением обмоток y/Δ (см. рис.3.18). При необходимости чувствительность двухфазной схемы можно повысить, установив третье токовое реле в общем проводе токовых цепей. В этом проводе (см. §3.6) протекает геометрическая сумма токов двух фаз, питающих схему, равная току третьей (отсутствующей в схеме) фазы В. С дополнительным реле двухфазная схема становится по чувствительности равноценной трехфазной. Двухфазные схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ. Двухфазные схемы применяются в качестве МТЗ от междуфазных КЗ и в сетях с глухозаземленной нейтралью. При этом для отключения однофазных КЗ устанавливается дополнительная МТЗ, реагирующая на ток НП.
4.3.3. Однорелейная схема
Защита состоит из тех же элементов (рис.4.5, в, г), что и предыдущая схема, но выполняется одним токовым реле КА, которое включается на разность токов двух фаз Ip = Ia – Ic и реагирует на все случаи междуфазных КЗ.
К недостаткам, ограничивающим применение схемы, нужно отнести меньшую чувствительность по сравнению с двухрелейной схемой при КЗ между фазами АВ и ВС; недействие МТЗ при одном из трех возможных случаев двухфазного КЗ за трансформатором с соединением обмоток Y/Δ когда Ip = Ia – Ic = 0.
Однорелейная схема находит применение в распределительных сетях 6-10 кВ, питающих трансформаторы с соединением обмоток y/y и для РЗ электродвигателей.
Двухфазная защита с зависимой характеристикой. Токовые цепи этой МТЗ выполняются так же, как и РЗ с независимой характеристикой (рис.4.5, а, в). В качестве реле тока с зависимой характеристикой выдержки времени в отечественных схемах используются реле типов РТ-80 и РТ-90. Схемы оперативных цепей МТЗ аналогичны схемам на рис.4.5, б, г за исключением того, что в них отсутствуют реле времени (КТ).
Лекция 5
5.1. Выбор тока срабатывания МТЗ
5.2. Чувствительность МТЗ
5.3. Выдержки времени защиты
5.3.1. Ступень времени
5.3.2. Выбор времени действия МТЗ
5.3.3. Согласование МТЗ с зависимыми характеристиками
5.1. Выбор тока срабатывания мтз
Исходным для выбора тока срабатывания МТЗ является требование, чтобы она надежно работала при повреждениях на защищаемом участке, но в то же время не действовала при максимальном рабочем токе нагрузки Iн mах и кратковременных перегрузках, вызванных пуском и самозапуском электродвигателей, а также нарушением нормального режима электрической сети.
Э
лектродвигатели
имеются в составе большей части
электрических нагрузок. При понижении
или исчезновении напряжения, вызванном
КЗ либо кратковременным перерывом
электроснабжения потребителей при
действии АПВ или АВР, электромагнитный
момент вращения электродвигателей
уменьшается, и они начинают тормозиться.
При этом наиболее важные для производства
электродвигатели оказываются полностью
или частично заторможенными, оставаясь
подключенными к сети. При восстановлении
напряжения они начинают разворачиваться
(самозапускаются), потребляя из сети
повышенные пусковые токи. Суммарный
ток во время самозапуска может существенно
превосходить суммарный максимальный
рабочий ток нагрузки Iр mах
установившегося
режима.
Увеличение тока нагрузки из-за самозапуска электродвигателей принято оценивать коэффициентом самозапуска kсзп, показывающим, во сколько раз возрастает ток Iр mах. Для отстройки МТЗ от Iн mах необходимо выполнить два условия.
По первому условию МТЗ, пришедшая в действие при КЗ в сети (вне защищаемой ЛЭП), должна надежно возвращаться в исходное состояние после отключения КЗ при наличии в защищаемой ЛЭП тока нагрузки Iн mах (рис.5.2, а). Так, например, при КЗ в точке К1 (рис.5.1) токовые реле МТЗ1 и МТЗ2 приходят в действие. После отключения действием МТЗ2 поврежденной ЛЭП W2 ток КЗ прекращается и в неповрежденной ЛЭП W1 остается ток Iн mах, питающий нагрузку НВ. При этом ИО МТЗ1, пришедшие в действие при КЗ, должны возвратиться в исходное положение.
Для обеспечения возврата МТЗ1 (рис.5.1) ее ток возврата Iвоз должен быть больше максимального тока нагрузки Iн mах. проходящего по ЛЭП W1 и ее МТЗ1 после отключения КЗ (Iвоз > Iн mах):
(5.1)
где kотс - коэффициент отстройки, учитывающий погрешность токового реле МТЗ; Iн mах в общем случае равен kсзп Iр mах. Подставив это значение вместо Iн mах (5.1), найдем
(5.la)
Коэффициент отстройки kотс для реле типов РТ-40, РТ-80 и статических реле принимается равным 1,1-1,2. Учитывая, что соотношение Iвоз/Iс.з определяется kв, подставляем в это соотношение Iвоз из (5.1 а). Зная значение kв для рассматриваемых реле, находим первичный ток срабатывания, обеспечивающий возврат МТЗ при Iн mах по первому условию:
(5.2)
По второму условию ИО тока, находящиеся в состоянии недействия МТЗ, не должны срабатывать при появлении Iн mах:
(5.3)
Наибольшее значение Iн mах имеет обычно в трех послеаварийных режимах:
а) при отключении одной из параллельных линий нагрузка на оставшейся удваивается (рис.5.2, а);
б) при успешном включении от АПВ (или вручную) поврежденной ЛЭП с подключенной к ней нагрузкой (например, на рис.5.2, в при включении от АПВ W1);
в) если к ЛЭП с рассматриваемой МТЗ, находящейся в работе и питающей нагрузку с током Iраб1, при действии АВР подключается дополнительная нагрузка, оставшаяся без напряжения из-за отключения питавшей ее ЛЭП (W2 на рис.5.2, б).
Характер изменения токов в режиме б) и в) аналогичен показанному на рис.5.3, а. В режиме б) в защищаемой ЛЭП W1 и МТЗ появляется ток I'н mах = kсзпIp max. Ток срабатывания МТЗ выбирается по выражению
(5.4)
В третьем режиме после отключения W2 АВР подает напряжение на нагрузку НС от W1. Начинается самозапуск. Полный ток нагрузки W1 после действия АВР
Ч
тобы
исключить срабатывание МТЗ на W1,
ток
срабатывания РЗ согласно условию (5.3)
рассчитывается по выражению
(5.5)
Из двух значений Iс.з, полученных по (5.2) и (5.4) или (5.5), принимается большее.
Вторичный ток срабатывания реле Iс.р находится с учетом коэффициента трансформации ТТ и схемы включения реле, характеризуемой коэффициентом схемы kсх:
(5.6)
Для
схемы соединения в звезду (полную и
неполную) kсх
= 1. При включении реле на разность токов
двух фаз kсх
=
.
Из выражений (5.2), (5.4), (5.5) следует, что значение Iс.з зависит не только от Iр mах, но также от kв и kсзп. В целях уменьшения Iс.з для повышения чувствительности МТЗ при КЗ стремятся применять токовые реле с высоким kв.
Значения kсзп принимаются равными 3-6 для нагрузки с преобладанием электродвигателей; 1,5-2 – при малом удельном значении электродвигателей. Когда электродвигатели составляют почти 100% нагрузки, ток самозапуска можно рассчитывать как трехфазное КЗ за сопротивлением полностью заторможенных электродвигателей.
Выбрав ток срабатывания МТЗ, следует проверить согласование ее по чувствительности с МТЗ следующего смежного участка радиальной сети. В общем случае МТЗ п, ближе расположенная к источнику питания, должна быть грубее, чем МТЗ п + 1, расположенная дальше.
Для этого необходимо выполнить условие
(5.6а)
где kотс – коэффициент отстройки, учитывающий погрешность реле по току срабатывания, равный 1,1-1,5.
Поскольку Iс.з выбирается по току нагрузки, то практически условие согласования чувствительности смежных МТЗ всегда выполняется, так как чем ближе ЛЭП (и МТЗ) к источнику питания, тем больше ее нагрузка, а следовательно, и ток Iс.з.
