- •1 Общие вопросы релейной защиты
- •1.1 Реле и их классификация
- •1.2 Основные требования к релейной защите
- •2.1. Виды повреждений и ненормальных режимов работы сетей
- •2.2. Оперативный ток и его источники
- •3.1. Первичные измерительные преобразователи в релейной
- •3.2. Трансформаторы тока
- •3.3. Схемы соединения измерительных трансформаторов тока и
- •3.3.1. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.2. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.3. Схема соединения трансформаторов тока в треугольник,
- •3.3.4. Двухфазная однорелейная схема соединения в неполный
- •3.3.5. Схема соединения трансформаторов тока в фильтр нулевой
- •3.4. Трансформаторы напряжения и схемы соединения их обмоток
- •Лекция 4 максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Максимальня токовая защита лэп
- •4.2.1. Принцип действия и селективности защиты.
- •4.2.2. Разновидности максимальной токовой защиты
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.3.1. Структурная схема трехфазной мтз
- •4.3.2. Схемы двухфазной защиты на постоянном оперативном токе
- •4.3.3. Однорелейная схема
- •Лекция 5
- •5.1. Выбор тока срабатывания мтз
- •5.2. Чувствительность мтз
- •5.3. Выдержки времени защиты
- •5.3.1. Ступень времени
- •5.3.2. Выбор времени действия мтз
- •5.3.3. Согласование мтз с зависимыми характеристиками
- •Лекция 6
- •6.1. Максимальная токовая защита с пуском от реле напряжения
- •6.2. Общая оценка и область применения мтз
- •Лекция 7 токовые отсечки
- •7.1. Принцип действия токовых отсечек
- •7.2. Схемы отсечек
- •7.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •7.3.1. Ток срабатывания отсечки
- •7.3.2. Время действия отсечки
- •7.4. Неселективные отсечки
- •7.5. Отсечки на линиях с двусторонним питанием
- •7.6. Отсечки с выдержкой времени
- •Лекция 8 токовая направленная защита
- •8.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •8.2. Функциональная схема и принцип действия токовой направленной защиты
- •8.3. Схемы направленной максимальной токовой
- •Лекция 9 дифференциальная защита линий
- •9.1. Принцип действия продольной дифференциальной защиты
- •9.2. Общие принципы выполнения продольной дифференциальной защиты линии
- •9.3. Дифференциальные реле с торможением
- •Лекция 10
- •10.1. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.2. Токовая поперечная дифференциальная защита
- •10.2.1. Принципы действия защиты
- •10.2.2. Мертвая зона защиты
- •10.2.3. Схема защиты
- •10.3. Оценка направленных поперечныз дифференциальных защит
- •Лекция 11 Дифференциально-фазная защита
- •Лекция 12 дистанционная защита
- •12.1. Назначение и принцип действия
- •12.2. Характеристики выдержки времени дистанционных защит
- •12.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •Лекция 13 структурная схема дистанционной защиты со ступенчатой характеристикой
- •Лекция 14 Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •14.1. Использование комплексной плоскости для изображения характеристик pc
- •14.2. Графическое изображение характеристик срабатывания реле
- •Лекция 15
- •15.1. Выбор уставок дистанционной защиты
- •15.2. Оценка дистанционной защиты
9.3. Дифференциальные реле с торможением
Реле с торможением, в отличие от простого дифференциального токового реле, выполняется таким образом, чтобы его ток срабатывания возрастал при увеличении тока внешнего КЗ согласно выражению
(10.7)
Принцип действия дифференциальной РЗ и реле с торможением (ДЗТ) поясняется схемами на рис.10.8. Реле с торможением имеет два элемента: рабочий Р и тормозной Т. Рабочий элемент включен через промежуточный трансформатор TLP по дифференциальной схеме, так же как и простое токовое реле в схемах, приведенных ранее. Ток, протекающий по рабочему элементу, называется рабочим Iр: при внешнем КЗ этот ток равен разности, а при КЗ в зоне – сумме вторичных токов IIв и IIIв. Тормозной элемент включается в рассечку соединительных проводов на ток IIв и IIIв. Ток, питающий тормозной элемент реле, препятствует срабатыванию реле и называется тормозным Iт. При внешнем КЗ или качаниях Iт = Iвн.к. Реле приходит в действие, если Iр > kтIт. Следовательно, рабочий ток, необходимый для срабатывания реле:
(10.8)
Коэффициент kт называется коэффициентом торможения, он характеризует степень загрубления реле под действием Iт. Обычно kт = 0,3 ÷ 0,6:
(10.9)
Характеристика срабатывания ДЗТ приведена на рис.10.8, в.
При внешнем КЗ Iр = IIв – IIIв = Iнб, Iт = Iк. При выполнении условия селективности (10.9) и Iр < kтIт реле не срабатывает. При КЗ в зоне РЗ Ip = IкIв + IкIIв. Так как при этом Iр > kтIт , реле срабатывает и отключает поврежденную ЛЭП.
Лекция 10
10.1. Принцип действия и виды поперечных дифференциальных защит параллельных линий
10.2. Токовая поперечная дифференциальная защита
10.2.1. Принципы действия защиты
10.2.2. Мертвая зона защиты
10.2.3. Схема защиты
10.3. Оценка направленных поперечных дифференциальных защит
10.1. Принцип действия и виды поперечных дифференциальных защит параллельных линий
Поперечные дифференциальные РЗ применяются на параллельных ЛЭП, имеющих одинаковое сопротивление, и основаны на сравнении значений и фаз токов, протекающих по обеим ЛЭП. Благодаря равенству сопротивлений ЛЭП в нормальном режиме и при внешнем КЗ токи в них равны по значению и фазе (II = III) (рис.10.15). В случае КЗ на одной из ЛЭП равенство токов нарушается. На питающем конце ЛЭП А токи II и III совпадают по фазе, но различаются по значению, а на приемном В – противоположны по фазе, что следует из токораспределения, приведенного на рис.10,15 б. Таким образом, нарушение равенства токов в параллельных ЛЭП по значению или фазе является признаком повреждения одной из них. Поперечные дифференциальные РЗ применяются двух видов: на параллельных ЛЭП, включенных под один общий выключатель – токовая поперечная дифференциальная РЗ; на параллельных ЛЭП с самостоятельными выключателями – направленная поперечная дифференциальная РЗ [2].
