- •1 Общие вопросы релейной защиты
- •1.1 Реле и их классификация
- •1.2 Основные требования к релейной защите
- •2.1. Виды повреждений и ненормальных режимов работы сетей
- •2.2. Оперативный ток и его источники
- •3.1. Первичные измерительные преобразователи в релейной
- •3.2. Трансформаторы тока
- •3.3. Схемы соединения измерительных трансформаторов тока и
- •3.3.1. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.2. Схема соединения трансформаторов тока и обмоток реле в
- •3.3.3. Схема соединения трансформаторов тока в треугольник,
- •3.3.4. Двухфазная однорелейная схема соединения в неполный
- •3.3.5. Схема соединения трансформаторов тока в фильтр нулевой
- •3.4. Трансформаторы напряжения и схемы соединения их обмоток
- •Лекция 4 максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Максимальня токовая защита лэп
- •4.2.1. Принцип действия и селективности защиты.
- •4.2.2. Разновидности максимальной токовой защиты
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.3.1. Структурная схема трехфазной мтз
- •4.3.2. Схемы двухфазной защиты на постоянном оперативном токе
- •4.3.3. Однорелейная схема
- •Лекция 5
- •5.1. Выбор тока срабатывания мтз
- •5.2. Чувствительность мтз
- •5.3. Выдержки времени защиты
- •5.3.1. Ступень времени
- •5.3.2. Выбор времени действия мтз
- •5.3.3. Согласование мтз с зависимыми характеристиками
- •Лекция 6
- •6.1. Максимальная токовая защита с пуском от реле напряжения
- •6.2. Общая оценка и область применения мтз
- •Лекция 7 токовые отсечки
- •7.1. Принцип действия токовых отсечек
- •7.2. Схемы отсечек
- •7.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •7.3.1. Ток срабатывания отсечки
- •7.3.2. Время действия отсечки
- •7.4. Неселективные отсечки
- •7.5. Отсечки на линиях с двусторонним питанием
- •7.6. Отсечки с выдержкой времени
- •Лекция 8 токовая направленная защита
- •8.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •8.2. Функциональная схема и принцип действия токовой направленной защиты
- •8.3. Схемы направленной максимальной токовой
- •Лекция 9 дифференциальная защита линий
- •9.1. Принцип действия продольной дифференциальной защиты
- •9.2. Общие принципы выполнения продольной дифференциальной защиты линии
- •9.3. Дифференциальные реле с торможением
- •Лекция 10
- •10.1. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.2. Токовая поперечная дифференциальная защита
- •10.2.1. Принципы действия защиты
- •10.2.2. Мертвая зона защиты
- •10.2.3. Схема защиты
- •10.3. Оценка направленных поперечныз дифференциальных защит
- •Лекция 11 Дифференциально-фазная защита
- •Лекция 12 дистанционная защита
- •12.1. Назначение и принцип действия
- •12.2. Характеристики выдержки времени дистанционных защит
- •12.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •Лекция 13 структурная схема дистанционной защиты со ступенчатой характеристикой
- •Лекция 14 Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •14.1. Использование комплексной плоскости для изображения характеристик pc
- •14.2. Графическое изображение характеристик срабатывания реле
- •Лекция 15
- •15.1. Выбор уставок дистанционной защиты
- •15.2. Оценка дистанционной защиты
6.2. Общая оценка и область применения мтз
Достоинством МТЗ является ее простота, надежность и небольшая стоимость. МТЗ обеспечивает селективность в радиальных сетях с односторонним питанием. К недостаткам МТЗ относятся: большие выдержки времени, особенно вблизи источников питания; недостаточная чувствительность при КЗ в разветвленных сетях с большими токами нагрузки.
МТЗ получила наиболее широкое распространение в радиальных сетях, в сетях 10 кВ и ниже является основной РЗ.
Лекция 7 токовые отсечки
7.1. Принцип действия токовых отсечек
7.2. Схемы отсечек
7.3. Отсечки мгновенного действия на линиях с односторонним питанием
7.3.1. Ток срабатывания отсечки
7.3.2. Время действия отсечки
7.4. Неселективные отсечки
7.5. Отсечки на линиях с двусторонним питанием
7.6. Отсечки с выдержкой времени
7.1. Принцип действия токовых отсечек
Отсечка является разновидностью МТЗ, позволяющей обеспечить быстрое отключение КЗ. Токовые отсечки подразделяются на отсечки мгновенного действия и отсечки с выдержкой времени.
Селективность токовых отсечек достигается ограничением их зоны действия так, чтобы отсечка не работала при КЗ за пределами этой зоны, на смежных участках сети, РЗ которых имеет выдержку времени, равную или большую, чем отсечка. Для этого ток срабатывания отсечки (Iс.з) должен быть больше максимального тока КЗ (IK max), проходящего через нее при повреждении в конце участка (например, AM на рис.5.1), за пределами которого она не должна работать: Iс.з > Iк М.
Действительно, ток КЗ в какой-либо точке рассматриваемого участка сети
(5.1)
г
де
Ес
– эквивалентная
ЭДС генераторов энергосистемы; Хс
и Хл.к
– сопротивление ЭЭС и участка ЛЭП (AM)
до точки КЗ; Ху
– удельное
сопротивление, Ом/км; lл.к
– длина участка до точки КЗ.
Зона действия мгновенной отсечки по условиям селективности не должна выходить за пределы защищаемой ЛЭП. Зона действия отсечки, работающей с выдержкой времени, выходит за пределы защищаемой ЛЭП и по условию селективности должна отстраиваться от конца зоны РЗ смежного участка по току и по времени.
Т
оковые
отсечки применяются как в радиальной
сети с односторонним питанием, так и в
сети, имеющей двустороннее питание.
7.2. Схемы отсечек
Схемы цепей постоянного тока отсечек изображены на рис.5.2, а, б. Схемы отсечек, выполненные на электромеханических реле и на постоянном оперативном токе, аналогичны схемам МТЗ, приведенным на рис.4.2 и 4.4.
Так же как и МТЗ, отсечки выполняются на постоянном и переменном оперативном токе, а также с помощью реле прямого действия.
Схемы отсечек с выдержкой времени полностью совпадают со схемами МТЗ с независимой выдержкой времени. Схемы отсечек без выдержки времени отличаются от схем МТЗ отсутствием реле времени.
7.3. Отсечки мгновенного действия на линиях с односторонним питанием
7.3.1. Ток срабатывания отсечки
Ток срабатывания мгновенной отсечки должен удовлетворять условию (5.2) при КЗ в конце защищаемой ЛЭП АВ, т. е. в точке М (рис.5.3):
(5.2)
где Iк(М)mах – максимальный ток КЗ в фазе ЛЭП при КЗ на шинах подстанции В (точка М на рис.5.3); kотс – коэффициент отстройки.
Ток КЗ Iк(М)mах рассчитывается для таких режимов работы ЭЭС и видов повреждений, при которых он оказывается наибольшим. Поскольку собственное время действия отсечки равно 0,02–0,01 с, то ток КЗ рассчитывается для начального момента времени (t = 0) и принимается равным действующему значению периодической составляющей. При расчете тока КЗ генераторы замещаются сверхпереходным сопротивлением Х''d.
В схемах отсечки, где токовые реле действуют непосредственно на отключение без промежуточного реле или с быстродействующим промежуточным реле, время действия отсечки может достигать одного периода (т.е. 0,02 с). В этом случае следует учитывать апериодическую составляющую тока КЗ, умножая ток Iк(М)mах на коэффициент ka = 1,6÷1.8.
У отсечек ЛЭП с токовыми реле типа РТ-40 kотс = 1,2÷1,3; с реле типа РТ-80 и РТ-90 kотс = 1,5 из-за большей погрешности реле.
На одиночных ЛЭП, питающих тупиковую ПС, и на ЛЭП, питающих подстанции, подключенные по схеме ответвления, необходимо дополнительно к условию (5.2) отстроить отсечку от суммарного броска тока намагничивания трансформаторов, установленных на этих подстанциях. Отстройка проверяется по выражению
(5.2а)
где Ihom.t – суммарный номинальный ток трансформаторов ПС.
Ток срабатывания отсечки принимается равным большему значению из определенных по (5.2) и (5.2а).
Ток срабатывания реле отсечки выбирается по выражению
(5.2б)
где kсх – коэффициент схемы.
Зона действия отсечки определяется графически, как показано на рис.5.3. Обычно строятся кривые тока КЗ в зависимости от расстояния Iл.к до точки КЗ; IК = f(l) для максимального и минимального режимов (кривые 1 и 2 на рис.5.3), и по точке пересечения их с прямой Iс.з находится конец зоны отсечки в максимальном и минимальном режимах (N1 и N2 соответственно).
Зону действия отсечки можно также определить по формуле
(5.3)
где Хотс – зона действия отсечки, выраженная в процентах от сопротивления защищаемой ЛЭП; Хл – сопротивление защищаемой ЛЭП; Хс – сопротивление ЭЭС (см. рис.5.1); Iс.з – ток срабатывания отсечки, выбранной согласно (5.2) и (5.2а).
Правила устройства электроустановок рекомендуют применять отсечку, если ее зона действия охватывает не менее 20% защищаемой ЛЭП. Вследствие простоты отсечки она применяется в качестве дополнительной РЗ и при зоне действия, меньшей 20%, если основная РЗ ЛЭП имеет мертвую зону.
При схеме работы ЛЭП блоком с трансформатором (рис.5.4) отсечку отстраивают от тока при КЗ за трансформатором в точке К1 В этом случае отсечка защищает всю ЛЭП и оказывается весьма эффективной.
