
- •1 Введение. Oсновныe сведения об автоматических системах
- •2 Производственный процесс как объект автоматизации
- •Как технология автоматизации вписывается в современный мир
- •Для чего необходимо управлять технологическим процессом?
- •Тп (технологический процесс) как объект управления
- •3 Основные критерии управления
- •4 Система управления
- •5 Приложения технологии автоматического управления
- •6 Классификация элементов автоматики
- •Датчики
- •Усилители
- •Программируемые логические контроллеры (plc)
- •Структура ввода/вывода между процессом и управляющим элементом.
- •7 Современные тенденции автоматизации производства
- •2 Идея "передающего элемента"
- •Линеаризация физических систем
- •Принцип суперпозиции
- •Свойство гомогенности
- •3 Порядок линейной системы
- •4 Управляемая система (controlled system) Что такое управляемая система?
- •5 Сигналы
- •Математическое представление сигналов
- •Дельта-функция (функция Дирака)
- •Синусоидальный (гармонический) сигнал
- •6 Выходной ответ системы (step response)
- •7 Типичные ответы на входное ступенчатое изменение технических систем с различными характеристиками
- •2 Примеры управляемых систем (объектов управления)
- •3 Характеристики объектов и систем автоматического управления Статические характеристики элементов
- •Свойство инерции
- •4 Модели элементов и систем управления Основные модели
- •Статические характеристики
- •Работа системы в статике
- •Линеаризация нелинейной статической характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •Определение параметров передаточной функции объекта по переходной кривой
- •6 Приближенные динамические модели инерционных статических объектов управления
- •7 Классификация типовых динамических звеньев
- •1) Усилительное звено (пропорциональное)
- •2) Интегрирующее
- •2.1) Идеальное интегрирующее
- •3) Дифференцирующее.
- •3.1) Идеальное дифференцирующее
- •3.2) Реальное дифференцирующее
- •4) Апериодическое (инерционное)
- •5) Запаздывающее
- •6) Звенья второго порядка
- •8 Соединения звеньев
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •3) Обратная связь
- •1 Разомкнутое (открытое) управление
- •Управление без обратной связи против управления с обратной связью
- •2 Открытый контур управления
- •Разомкнутое (открытое) управление
- •3 Простая измерительная цепь
- •4 Метрологические характеристики измерительных преобразователей
- •5 Обозначения элементов систем автоматики (средств автоматизации)
- •1 Обработка сигналов
- •Виды сигналов
- •2 Преобразование сигналов датчиков в стандартные управляющие сигналы. Преобразователи.
- •Преобразователь давления
- •Преобразователь температуры
- •3 Стандарты на аналоговые сигналы
- •4 Преобразование аналоговых величин в дигитальные. Оцифровка выходов датчиков Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации
- •Устройство обработки сигнала
- •5 Масштабирование
- •Как преобразовать входной аналоговый сигнал в инженерные единицы?
- •Пример цифро-аналогового преобразования
- •Преобразование 12-ти битового сигнала в инженерные единицы
- •Линеаризация величин
- •6 Выбор интервала дискретизации
- •Время преобразования
- •7 Цифровая фильтрация аналоговых сигналов
- •Фильтр аналоговых входов
- •1 Цифровая система управления
- •2 Управление техническим процессом
- •3 Измерительная информация и средства измерений
- •4 Цифровые измерительные системы и их компоненты
- •5 Машинное представление цифровых результатов измерений
- •6 Хранение и передача результатов измерений в цифровых системах
- •7 Общие сведения о промышленных сетях
- •1 Алгоритм управления
- •Определение алгоритма
- •Управление и алгоритмы. Логическая схема понятий
- •Исполнитель алгоритмов
- •2 Свойства алгоритма
- •Линейный алгоритм
- •3 Основные элементы блок-схемы алгоритма
- •4 Алгоритм функционирования асу
- •5 Типовые алгоритмы управления в линейных асу
- •Линейные алгоритмы управления
- •Управление с обратной связью
- •Циклы и ветвления в алгоритмах
- •Системы с программным управлением
- •6 Основные функции, используемые в цифровой технологии Логические элементы
- •Практическое значение алгебры логики
- •1 Основы технологии систем с замкнутым контуром управления
- •2 Что такое технология систем с замкнутым контуром?
- •Определения
- •Что такое управляемая система?
- •Последовательность в этой системе управления
- •Система с замкнутым контуром управления
- •3 Управление с обратной связью (ос)
- •4 Управляемая система (controlled system)
- •5 Контроллер (plc)
- •Выход plc
- •Динамика контроллера
- •Интегральный выход контроллера (I -контроллер)
- •Дифференциальный выход контроллера (d-контроллер)
- •1 Виды управления. Цель управления.
- •Заданное командное управление
- •Прямое (последовательное) управление
- •Управление в контуре обратной связью
- •2 Понятие качества процесса управления
- •Качественные критерии системы управления
- •Оценки качества управления
- •Классификация внешних воздействий
- •3 Показатели качества качества управления асу
- •4 Показатели качества управления асу в установившемся динамическом режиме
- •5 Показатели качества управления асу в переходном режиме
- •Характер затухания переходного процесса
- •6 Прямые показатели качества процесса управления (регулирования) по каналу задания
- •Степень затухания
- •7 Качественные критерии для реакции на помехи. Прямые показатели качества процесса управления по каналу возмущения и шумов измерений
- •8 Что такое устойчивость асу?
- •Основные условия устойчивости
- •9 Причины неустойчивости асу
- •10 Свойства, усложняющие управление
- •Нелинейность процесса
- •3. Изменение условий самого процесса.
- •5. Внутренние взаимосвязи.
- •1 Автоматическое управление с импульсными контроллерами: особенности двухпозиционных и трехпозиционных контроллеров
- •2 Двухпозиционные регуляторы (On-off controller)
- •3 Гистерезис
- •4 Алгоритмы двухпозиционного регулирования
- •5 Процессы управления с двухпозиционным законом
- •6 Виды и логика работы двухпозиционных регуляторов и систем сигнализации
- •Абсолютная (независимая) сигнализация
- •7 Двухпозиционное импульсное управление
- •8 Дополнительные функциональные возможности двухпозиционных регуляторов
- •Недостатки двухпозиционного регулирования
- •9 Трехпозиционные регуляторы Назначение. Принцип работы
- •10 Алгоритмы трехпозиционного регулирования
- •Зона гистерезиса
- •11 Процессы регулирования с трехпозиционным законом
- •12 Система управления с позиционным регулированием
- •1 Повторение. Общие положения Идентификация моделей динамических систем
- •Расчет параметров
- •3 Строение pid - контроллера
- •Pi контроллер
- •1 Выбор параметров pid контроллеров
- •P контроллер
- •Pd контроллер
- •Pid контроллер
- •Топология параллельного pid
- •Алгоритм pid контроллера
- •Определение динамических характеристик объекта регулирования
- •2 Рекомендации по выбору закона регулирования и типа регулятора
- •3 Основные принципы оптимизации для pid контроллеров
- •Время регулирования для различных типов регуляторов
- •4 Методы настройки параметров
- •1. Метод Ziegler-Nichols (Циглера Никольса) - Настройка по процессу двухпозиционного регулирования по релейному закону:
- •Параметры настройки в соответствии с рекомендациями Циглера-Никольса
- •Эксперимент в замкнутом контуре
- •Ручная настройка, основанная на правилах
- •5 Совместимость типа управляемой системы с соответствующим типом контроллера
- •Причины появления времени мёртвой зоны
- •6 Пример настройки в контуре температуры Этап 1
- •Этап 2 Настройка диффференциальной компоненты tD .
- •Этап 3 Настройка интегральной компоненты tI .
- •1 Введение
- •2 Характеристики p, I, d и контроллеров в plc
- •4 Общие рекомендации по разработке pid -регулятора plc
- •Критерий качества регулятора plc
- •5 Выбор интервала дискретизации
- •6 Аспекты программирования Время мертвой зоны (Dead Time)
- •Алгоритмы программирования
- •Единицы контроллера
- •Дифференциальное действие и фильтр
- •7 Использование фильтра сигналов в pid контуре
- •Алгоритм фильтра выхода контроллера (со)
- •8 Адаптивное регулирование
- •9 Нечеткая логика в pid -регуляторах Нечеткая логика, нейронные сети и генетические алгоритмы
- •Нечеткая логика в pid -регуляторах
- •Принципы построения нечеткого pi -регулятора
Нечеткая логика в pid -регуляторах
Нечеткое управление (управление на основе методов теории нечетких множеств) используется при недостаточном знании объекта управления, но наличии опыта управления им, в нелинейных системах, идентификация которых слишком трудоемка, а также в случаях, когда по условию задачи необходимо использовать знания эксперта. Примером может быть доменная печь или ректификационная колонна, математическая модель которых содержит много эмпирических коэффициентов, изменяющихся в широком диапазоне и вызывающих большие затруднения при идентификации. В то же время квалифицированный оператор достаточно хорошо управляет такими объектами, пользуясь показаниями приборов и накопленным опытом.
PID -регуляторы с нечеткой логикой в настоящее время используются в коммерческих системах для наведения телекамер при трансляции спортивных событий, в системах кондиционирования воздуха, при управлении автомобильными двигателями; для автоматического управления двигателем пылесоса и в других областях.
Поскольку информация, полученная от оператора, выражена словесно, для ее использования в PID -регуляторах применяют лингвистические переменные и аппарат теории нечетких множеств, который был разработан Л. Заде [Zadeh] в 1965 году. Основная идея этой теории состоит в следующем. Если в теории четких множеств некоторый элемент (например, температура 500 C) может принадлежать множеству (например, множеству "температура горячей воды Tгоряч.") или не принадлежать ему, то в теории нечетких множеств вводится понятие функции принадлежности, которая характеризует степень принадлежности элемента множеству. При этом говорят, например, "температура 500 C принадлежит множеству Tгоряч. со степенью принадлежности 0,264". Функцию принадлежности можно приближенно трактовать как вероятность того, что данный элемент принадлежит множеству.
В 1974 году Мамдани [Mamdani] показал возможность применения идей нечеткой логики для построения системы управления динамическим объектом, а годом позже вышла публикация, в которой описывался нечеткий PI-регулятор и его применения для управления парогенератором. С тех пор область применения нечетких регуляторов постоянно расширяется, увеличивается разнообразие их структур и выполняемых функций.
Нечеткая логика в PID-регуляторах используется преимущественно двумя путями: для построения самого регулятора и для организации подстройки коэффициентов PID -регулятора. Оба пути могут использоваться в PID -контроллере одновременно.
Рис. 2. Структура нечеткого PI –регулятора
Одна из наиболее распространенных структур нечеткого PI-регулятора) показана на рис. 2. На вход регулятора поступает ошибка е и вычисляется ее производная по времени de/dt . Далее обе величины сначала подвергаются операции фаззификации (преобразования в нечеткие переменные), затем полученные нечеткие переменные используются в блоке нечеткого логического вывода для получения управляющего воздействия на объект, которое после выполнения операции дефаззификации (обратного преобразования нечетких переменных в четкие) поступает на выход регулятора в виде управляющего воздействия u.