
- •1 Введение. Oсновныe сведения об автоматических системах
- •2 Производственный процесс как объект автоматизации
- •Как технология автоматизации вписывается в современный мир
- •Для чего необходимо управлять технологическим процессом?
- •Тп (технологический процесс) как объект управления
- •3 Основные критерии управления
- •4 Система управления
- •5 Приложения технологии автоматического управления
- •6 Классификация элементов автоматики
- •Датчики
- •Усилители
- •Программируемые логические контроллеры (plc)
- •Структура ввода/вывода между процессом и управляющим элементом.
- •7 Современные тенденции автоматизации производства
- •2 Идея "передающего элемента"
- •Линеаризация физических систем
- •Принцип суперпозиции
- •Свойство гомогенности
- •3 Порядок линейной системы
- •4 Управляемая система (controlled system) Что такое управляемая система?
- •5 Сигналы
- •Математическое представление сигналов
- •Дельта-функция (функция Дирака)
- •Синусоидальный (гармонический) сигнал
- •6 Выходной ответ системы (step response)
- •7 Типичные ответы на входное ступенчатое изменение технических систем с различными характеристиками
- •2 Примеры управляемых систем (объектов управления)
- •3 Характеристики объектов и систем автоматического управления Статические характеристики элементов
- •Свойство инерции
- •4 Модели элементов и систем управления Основные модели
- •Статические характеристики
- •Работа системы в статике
- •Линеаризация нелинейной статической характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •Определение параметров передаточной функции объекта по переходной кривой
- •6 Приближенные динамические модели инерционных статических объектов управления
- •7 Классификация типовых динамических звеньев
- •1) Усилительное звено (пропорциональное)
- •2) Интегрирующее
- •2.1) Идеальное интегрирующее
- •3) Дифференцирующее.
- •3.1) Идеальное дифференцирующее
- •3.2) Реальное дифференцирующее
- •4) Апериодическое (инерционное)
- •5) Запаздывающее
- •6) Звенья второго порядка
- •8 Соединения звеньев
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •3) Обратная связь
- •1 Разомкнутое (открытое) управление
- •Управление без обратной связи против управления с обратной связью
- •2 Открытый контур управления
- •Разомкнутое (открытое) управление
- •3 Простая измерительная цепь
- •4 Метрологические характеристики измерительных преобразователей
- •5 Обозначения элементов систем автоматики (средств автоматизации)
- •1 Обработка сигналов
- •Виды сигналов
- •2 Преобразование сигналов датчиков в стандартные управляющие сигналы. Преобразователи.
- •Преобразователь давления
- •Преобразователь температуры
- •3 Стандарты на аналоговые сигналы
- •4 Преобразование аналоговых величин в дигитальные. Оцифровка выходов датчиков Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации
- •Устройство обработки сигнала
- •5 Масштабирование
- •Как преобразовать входной аналоговый сигнал в инженерные единицы?
- •Пример цифро-аналогового преобразования
- •Преобразование 12-ти битового сигнала в инженерные единицы
- •Линеаризация величин
- •6 Выбор интервала дискретизации
- •Время преобразования
- •7 Цифровая фильтрация аналоговых сигналов
- •Фильтр аналоговых входов
- •1 Цифровая система управления
- •2 Управление техническим процессом
- •3 Измерительная информация и средства измерений
- •4 Цифровые измерительные системы и их компоненты
- •5 Машинное представление цифровых результатов измерений
- •6 Хранение и передача результатов измерений в цифровых системах
- •7 Общие сведения о промышленных сетях
- •1 Алгоритм управления
- •Определение алгоритма
- •Управление и алгоритмы. Логическая схема понятий
- •Исполнитель алгоритмов
- •2 Свойства алгоритма
- •Линейный алгоритм
- •3 Основные элементы блок-схемы алгоритма
- •4 Алгоритм функционирования асу
- •5 Типовые алгоритмы управления в линейных асу
- •Линейные алгоритмы управления
- •Управление с обратной связью
- •Циклы и ветвления в алгоритмах
- •Системы с программным управлением
- •6 Основные функции, используемые в цифровой технологии Логические элементы
- •Практическое значение алгебры логики
- •1 Основы технологии систем с замкнутым контуром управления
- •2 Что такое технология систем с замкнутым контуром?
- •Определения
- •Что такое управляемая система?
- •Последовательность в этой системе управления
- •Система с замкнутым контуром управления
- •3 Управление с обратной связью (ос)
- •4 Управляемая система (controlled system)
- •5 Контроллер (plc)
- •Выход plc
- •Динамика контроллера
- •Интегральный выход контроллера (I -контроллер)
- •Дифференциальный выход контроллера (d-контроллер)
- •1 Виды управления. Цель управления.
- •Заданное командное управление
- •Прямое (последовательное) управление
- •Управление в контуре обратной связью
- •2 Понятие качества процесса управления
- •Качественные критерии системы управления
- •Оценки качества управления
- •Классификация внешних воздействий
- •3 Показатели качества качества управления асу
- •4 Показатели качества управления асу в установившемся динамическом режиме
- •5 Показатели качества управления асу в переходном режиме
- •Характер затухания переходного процесса
- •6 Прямые показатели качества процесса управления (регулирования) по каналу задания
- •Степень затухания
- •7 Качественные критерии для реакции на помехи. Прямые показатели качества процесса управления по каналу возмущения и шумов измерений
- •8 Что такое устойчивость асу?
- •Основные условия устойчивости
- •9 Причины неустойчивости асу
- •10 Свойства, усложняющие управление
- •Нелинейность процесса
- •3. Изменение условий самого процесса.
- •5. Внутренние взаимосвязи.
- •1 Автоматическое управление с импульсными контроллерами: особенности двухпозиционных и трехпозиционных контроллеров
- •2 Двухпозиционные регуляторы (On-off controller)
- •3 Гистерезис
- •4 Алгоритмы двухпозиционного регулирования
- •5 Процессы управления с двухпозиционным законом
- •6 Виды и логика работы двухпозиционных регуляторов и систем сигнализации
- •Абсолютная (независимая) сигнализация
- •7 Двухпозиционное импульсное управление
- •8 Дополнительные функциональные возможности двухпозиционных регуляторов
- •Недостатки двухпозиционного регулирования
- •9 Трехпозиционные регуляторы Назначение. Принцип работы
- •10 Алгоритмы трехпозиционного регулирования
- •Зона гистерезиса
- •11 Процессы регулирования с трехпозиционным законом
- •12 Система управления с позиционным регулированием
- •1 Повторение. Общие положения Идентификация моделей динамических систем
- •Расчет параметров
- •3 Строение pid - контроллера
- •Pi контроллер
- •1 Выбор параметров pid контроллеров
- •P контроллер
- •Pd контроллер
- •Pid контроллер
- •Топология параллельного pid
- •Алгоритм pid контроллера
- •Определение динамических характеристик объекта регулирования
- •2 Рекомендации по выбору закона регулирования и типа регулятора
- •3 Основные принципы оптимизации для pid контроллеров
- •Время регулирования для различных типов регуляторов
- •4 Методы настройки параметров
- •1. Метод Ziegler-Nichols (Циглера Никольса) - Настройка по процессу двухпозиционного регулирования по релейному закону:
- •Параметры настройки в соответствии с рекомендациями Циглера-Никольса
- •Эксперимент в замкнутом контуре
- •Ручная настройка, основанная на правилах
- •5 Совместимость типа управляемой системы с соответствующим типом контроллера
- •Причины появления времени мёртвой зоны
- •6 Пример настройки в контуре температуры Этап 1
- •Этап 2 Настройка диффференциальной компоненты tD .
- •Этап 3 Настройка интегральной компоненты tI .
- •1 Введение
- •2 Характеристики p, I, d и контроллеров в plc
- •4 Общие рекомендации по разработке pid -регулятора plc
- •Критерий качества регулятора plc
- •5 Выбор интервала дискретизации
- •6 Аспекты программирования Время мертвой зоны (Dead Time)
- •Алгоритмы программирования
- •Единицы контроллера
- •Дифференциальное действие и фильтр
- •7 Использование фильтра сигналов в pid контуре
- •Алгоритм фильтра выхода контроллера (со)
- •8 Адаптивное регулирование
- •9 Нечеткая логика в pid -регуляторах Нечеткая логика, нейронные сети и генетические алгоритмы
- •Нечеткая логика в pid -регуляторах
- •Принципы построения нечеткого pi -регулятора
4 Общие рекомендации по разработке pid -регулятора plc
При разработке PID -регулятора PLC для данной системы необходимы следующие действия, чтобы получить желаемый ответ:
Получить ответ разомкнутого контура и определить, что нуждается в улучшении;
Добавить пропорциональное управление для улучшения времени нарастания;
Добавить производную для улучшения выброса;
Добавить интегральную составляющую для устранения установившейся ошибки;
Настраивать каждый из KP, KI, KD, пока не получится желаемый общий ответ. (Лекция 13)
Иногда не нужно использовать все три составляющие контроллера (пропорциональную, производную, и интегральную) в единую систему, если нет необходимости.
Например, если PI-регулятор дает достаточно хороший ответ, то не нужно выполнять производную составляющую контроллера в системе. Контроллер должен быть как можно более простым!
Один из популярных методов настроить PID контроллер, это рассчитать параметры контроллера из модели первого порядка.
Эта процедура разная для разных типов процессов (например, уровень; без задержки или с временем мёртвой зоны) и различные режимы управления (PI, PID,..)
Критерий качества регулятора plc
Если рабочие характеристики регулятора известны заранее, их можно использовать как базисный критерий для оценки регулятора. Но этот критерий не учитывает в явной форме влияние возмущений. Классический критерий для управления - измеренные значения выходных величин должны как можно меньше отличаться от заданных.
Параметры регулятора настраиваются так, чтобы минимизировать этот показатель.
Управляющий сигнал должен быть ограничен (в реальных приложениях) для того, чтобы избежать износа исполнительных механизмов. Вначале выбирается стратегия управления и критерий качества, а на их основе определяются параметры регулятора.
Цифровой вариант регулятора обладает дополнительными преимуществами:
Проще обрабатывааются функции плавного перехода и предотвращения интегрального насыщения.
Он обеспечивает необходимое качество фильтрации при регулировании производной.
Цифровой регулятор позволяет легко ограничивать величину управляющего сигнала и скорость его изменения.
Основная сложность состоит в подборе необходимых параметров. Если изменеие коэффициентов процесса известно заранее, то применяются таблицы управления коэффициентами процесса. При выполнении регулирования на основе алгоритма приращения вычисляются малыми величинами, для которых достаточно слова. В то же время неточности округления в интегральной части ухудшают качество. Когда происходит переключение режимов работы, величина управляющего воздействия должна вводиться вручную. Общее решение этой проблемы - при каждом переключении имитировать ввод выходного сигнала регулятора, равного текущему выходному значению, установленному вручную.
Алгоритм регулятора PLC выполняется в момент каждой выборки. Программа включает:
Ввод опорного значения (аналоговый вход)
Ввод измерения
Вычисление ошибки управления
Считывание параметров настройки регулятора.
Общие проблемы:
Определение интервала выборки
Ограничение управляющего сигнала
Интегральное насыщение
Плавный переход от ручного управления к автоматическому.
Таблица 2 Таблица параметров настройки
Пропорциональный :
PB = зона пропорциональности (proportional band, % of the PV span);
KC= коэффициент контроллера (controller gain, %/%)
KP = коэффициент пропорциональности контроллера (proportional gain, %/%)
Интегральный: TI= время сброса (reset time, minutes);
RI= скорость сброса (reset rate, repeats/minute);
KI= коэффициент сброса (reset gain, (%/%)/minute)
Дифференциальный: TD= время дифференциала (derivative time, minutes);
KD= время дифференциала (derivative time, (%/%)-minutes)
Таблица 3 Таблица соотношений между параметрами настройки
Пропорциональный :
PB = зона пропорциональности (proportional band, % of the PV span);
KC= коэффициент контроллера (controller gain, %/%)
KP = коэффициент пропорциональности контроллера (proportional gain, %/%)
Интегральный: TI= время сброса (reset time, minutes);
RI= скорость сброса (reset rate, repeats/minute);
KI= коэффициент сброса (reset gain, (%/%)/minute)
Дифференциальный: TD= время дифференциала (derivative time, minutes);
KD= время дифференциала (derivative time, (%/%)-minutes)
Таблица 3 Таблица соотношений между параметрами настройки
KC = коэффициент контроллера (%/%) и KP = коэффициент пропорциональности контроллера (%/%). На практике это относится к коэффициенту пропорциональности контроллера.
Иногда PB - зона пропорциональности - выражается в инженерных единицах PV.
Важным аспектом является использование для расчета суммарного вклада интегрального члена. Это может привести к явлению, известному как integral windup, вызвающее длительное перерегулирование в контролируемой реакции. Это может быть вызвано плохо настроенным контроллером или выход контроллера слишком ограничен (по некоторым соображениям безопасности или ненадлежащим размером конечного регулирующего элемента), или комбинацией обоих факторов.
Как это происходит? Скажем, управляемый процесс имеет положительный коэффициент усиления и положительное изменение заданной уставки. Контроллер будет пытаться уменьшить погрешность между уставкой и выходом, который изначально положительный. Интегральная компонента будет суммировать эти позитивные ошибки, чтобы создать необходимые интегральное действие. Выброс (overshoot) произойдёт, после чего ошибки становятся отрицательными. Тем не менее, направление сигнала управления не будет меняться, чтобы компенсировать, если сумма ранее положительных ошибок доминирует, в этом случае выброс становится продолжительным.
Направление управляющего воздействия изменится только тогда, когда вклад отрицательный ошибки отменит допонительную накопленную положительную ошибку. Это явление известно как integral windup или reset windup.