
- •1 Введение. Oсновныe сведения об автоматических системах
- •2 Производственный процесс как объект автоматизации
- •Как технология автоматизации вписывается в современный мир
- •Для чего необходимо управлять технологическим процессом?
- •Тп (технологический процесс) как объект управления
- •3 Основные критерии управления
- •4 Система управления
- •5 Приложения технологии автоматического управления
- •6 Классификация элементов автоматики
- •Датчики
- •Усилители
- •Программируемые логические контроллеры (plc)
- •Структура ввода/вывода между процессом и управляющим элементом.
- •7 Современные тенденции автоматизации производства
- •2 Идея "передающего элемента"
- •Линеаризация физических систем
- •Принцип суперпозиции
- •Свойство гомогенности
- •3 Порядок линейной системы
- •4 Управляемая система (controlled system) Что такое управляемая система?
- •5 Сигналы
- •Математическое представление сигналов
- •Дельта-функция (функция Дирака)
- •Синусоидальный (гармонический) сигнал
- •6 Выходной ответ системы (step response)
- •7 Типичные ответы на входное ступенчатое изменение технических систем с различными характеристиками
- •2 Примеры управляемых систем (объектов управления)
- •3 Характеристики объектов и систем автоматического управления Статические характеристики элементов
- •Свойство инерции
- •4 Модели элементов и систем управления Основные модели
- •Статические характеристики
- •Работа системы в статике
- •Линеаризация нелинейной статической характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •Определение параметров передаточной функции объекта по переходной кривой
- •6 Приближенные динамические модели инерционных статических объектов управления
- •7 Классификация типовых динамических звеньев
- •1) Усилительное звено (пропорциональное)
- •2) Интегрирующее
- •2.1) Идеальное интегрирующее
- •3) Дифференцирующее.
- •3.1) Идеальное дифференцирующее
- •3.2) Реальное дифференцирующее
- •4) Апериодическое (инерционное)
- •5) Запаздывающее
- •6) Звенья второго порядка
- •8 Соединения звеньев
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •3) Обратная связь
- •1 Разомкнутое (открытое) управление
- •Управление без обратной связи против управления с обратной связью
- •2 Открытый контур управления
- •Разомкнутое (открытое) управление
- •3 Простая измерительная цепь
- •4 Метрологические характеристики измерительных преобразователей
- •5 Обозначения элементов систем автоматики (средств автоматизации)
- •1 Обработка сигналов
- •Виды сигналов
- •2 Преобразование сигналов датчиков в стандартные управляющие сигналы. Преобразователи.
- •Преобразователь давления
- •Преобразователь температуры
- •3 Стандарты на аналоговые сигналы
- •4 Преобразование аналоговых величин в дигитальные. Оцифровка выходов датчиков Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации
- •Устройство обработки сигнала
- •5 Масштабирование
- •Как преобразовать входной аналоговый сигнал в инженерные единицы?
- •Пример цифро-аналогового преобразования
- •Преобразование 12-ти битового сигнала в инженерные единицы
- •Линеаризация величин
- •6 Выбор интервала дискретизации
- •Время преобразования
- •7 Цифровая фильтрация аналоговых сигналов
- •Фильтр аналоговых входов
- •1 Цифровая система управления
- •2 Управление техническим процессом
- •3 Измерительная информация и средства измерений
- •4 Цифровые измерительные системы и их компоненты
- •5 Машинное представление цифровых результатов измерений
- •6 Хранение и передача результатов измерений в цифровых системах
- •7 Общие сведения о промышленных сетях
- •1 Алгоритм управления
- •Определение алгоритма
- •Управление и алгоритмы. Логическая схема понятий
- •Исполнитель алгоритмов
- •2 Свойства алгоритма
- •Линейный алгоритм
- •3 Основные элементы блок-схемы алгоритма
- •4 Алгоритм функционирования асу
- •5 Типовые алгоритмы управления в линейных асу
- •Линейные алгоритмы управления
- •Управление с обратной связью
- •Циклы и ветвления в алгоритмах
- •Системы с программным управлением
- •6 Основные функции, используемые в цифровой технологии Логические элементы
- •Практическое значение алгебры логики
- •1 Основы технологии систем с замкнутым контуром управления
- •2 Что такое технология систем с замкнутым контуром?
- •Определения
- •Что такое управляемая система?
- •Последовательность в этой системе управления
- •Система с замкнутым контуром управления
- •3 Управление с обратной связью (ос)
- •4 Управляемая система (controlled system)
- •5 Контроллер (plc)
- •Выход plc
- •Динамика контроллера
- •Интегральный выход контроллера (I -контроллер)
- •Дифференциальный выход контроллера (d-контроллер)
- •1 Виды управления. Цель управления.
- •Заданное командное управление
- •Прямое (последовательное) управление
- •Управление в контуре обратной связью
- •2 Понятие качества процесса управления
- •Качественные критерии системы управления
- •Оценки качества управления
- •Классификация внешних воздействий
- •3 Показатели качества качества управления асу
- •4 Показатели качества управления асу в установившемся динамическом режиме
- •5 Показатели качества управления асу в переходном режиме
- •Характер затухания переходного процесса
- •6 Прямые показатели качества процесса управления (регулирования) по каналу задания
- •Степень затухания
- •7 Качественные критерии для реакции на помехи. Прямые показатели качества процесса управления по каналу возмущения и шумов измерений
- •8 Что такое устойчивость асу?
- •Основные условия устойчивости
- •9 Причины неустойчивости асу
- •10 Свойства, усложняющие управление
- •Нелинейность процесса
- •3. Изменение условий самого процесса.
- •5. Внутренние взаимосвязи.
- •1 Автоматическое управление с импульсными контроллерами: особенности двухпозиционных и трехпозиционных контроллеров
- •2 Двухпозиционные регуляторы (On-off controller)
- •3 Гистерезис
- •4 Алгоритмы двухпозиционного регулирования
- •5 Процессы управления с двухпозиционным законом
- •6 Виды и логика работы двухпозиционных регуляторов и систем сигнализации
- •Абсолютная (независимая) сигнализация
- •7 Двухпозиционное импульсное управление
- •8 Дополнительные функциональные возможности двухпозиционных регуляторов
- •Недостатки двухпозиционного регулирования
- •9 Трехпозиционные регуляторы Назначение. Принцип работы
- •10 Алгоритмы трехпозиционного регулирования
- •Зона гистерезиса
- •11 Процессы регулирования с трехпозиционным законом
- •12 Система управления с позиционным регулированием
- •1 Повторение. Общие положения Идентификация моделей динамических систем
- •Расчет параметров
- •3 Строение pid - контроллера
- •Pi контроллер
- •1 Выбор параметров pid контроллеров
- •P контроллер
- •Pd контроллер
- •Pid контроллер
- •Топология параллельного pid
- •Алгоритм pid контроллера
- •Определение динамических характеристик объекта регулирования
- •2 Рекомендации по выбору закона регулирования и типа регулятора
- •3 Основные принципы оптимизации для pid контроллеров
- •Время регулирования для различных типов регуляторов
- •4 Методы настройки параметров
- •1. Метод Ziegler-Nichols (Циглера Никольса) - Настройка по процессу двухпозиционного регулирования по релейному закону:
- •Параметры настройки в соответствии с рекомендациями Циглера-Никольса
- •Эксперимент в замкнутом контуре
- •Ручная настройка, основанная на правилах
- •5 Совместимость типа управляемой системы с соответствующим типом контроллера
- •Причины появления времени мёртвой зоны
- •6 Пример настройки в контуре температуры Этап 1
- •Этап 2 Настройка диффференциальной компоненты tD .
- •Этап 3 Настройка интегральной компоненты tI .
- •1 Введение
- •2 Характеристики p, I, d и контроллеров в plc
- •4 Общие рекомендации по разработке pid -регулятора plc
- •Критерий качества регулятора plc
- •5 Выбор интервала дискретизации
- •6 Аспекты программирования Время мертвой зоны (Dead Time)
- •Алгоритмы программирования
- •Единицы контроллера
- •Дифференциальное действие и фильтр
- •7 Использование фильтра сигналов в pid контуре
- •Алгоритм фильтра выхода контроллера (со)
- •8 Адаптивное регулирование
- •9 Нечеткая логика в pid -регуляторах Нечеткая логика, нейронные сети и генетические алгоритмы
- •Нечеткая логика в pid -регуляторах
- •Принципы построения нечеткого pi -регулятора
12 Система управления с позиционным регулированием
В процессах химической технологии регулирующими параметрами обычно бывают материальные потоки сырья, полуфабрикатов, энергоносителей и другие. Изменение таких потоков производят с помощью клапанов, заслонок, задвижек, кранов и других регулирующих органов. Иногда не удается или затруднительно применить регулирующий орган, плавно изменяющий расход в трубопроводе. Например, на абразивных пульпах или агрессивных средах обычные регулирующие органы быстро изнашиваются или разрушаются. В некоторых случаях не желательны потери давления в трубопроводе на регулирующем органе. Чаще оказывается проще вместо плавного регулирования потока в трубопроводе просто включать или выключать насос. Наконец, в процессах с электрическим нагревом, как правило, подаваемую на нагрев электроэнергию не регулируют плавно, а только включают или выключают электронагрев в зависимости от значения регулируемой температуры.
Всем подобным примерам свойственна одна особенность - позиционное изменение регулирующего параметра. Если регулирующий параметр может принимать только одно из двух возможных значений (включено - выключено, открыто - закрыто и др.), то соответствующий регулятор и вся система управления называются двухпозиционными. Понятно, что ограничение регулирующего параметра ухудшает качество регулирования системы управления.
В качестве примера рассмотрим работу двухпозиционной системы управления на примере регулирования температуры плиты пресса для производства пластмассовых изделий (рис.14).
Рис. 14. Двухпозиционная система управления температуры. (ИУ – измерительное устройство, ИМ – исполнительный механизм, Р- регулятор, РО – регулирующий орган, 1 – плита, 2 – электрический нагреватель.)
В плиту 1 вмонтирован электрический нагреватель 2, подключенный к силовой электросети через выключатель, который является регулирующим органом РО. Управление выключателем производится электромагнитом исполнительного механизма ИМ. Температура плиты измеряется термопарой в комплекте с автоматическим потенциометром, образующее измерительное устройство ИУ. Результат измерения температуры передается в регулятор Р, который управляет исполнительным механизмом. При опускании температуры ниже заданной нагреватель включается, а при превышении заданной температуры - выключается.
Чтобы термопара измеряла среднюю температуру плиты, ее заглубляют в плиту, но не слишком близко к нагревателю. Сама плита с нагревателем как объект регулирования обладает значительной тепловой инерцией и запаздыванием выходного сигнала. При нагреве литы, когда нагреватель включен, повышение температуры происходит постепенно, от центра к поверхности. Поэтому термопара реагирует на включение нагревателя с запаздыванием. Точно так же при остывании плиты, когда нагреватель включен, снижение температуры распространяется от поверхности к центру и не сразу улавливается термопарой.
Рис. 15. Переходные процессы в двухпозиционной системе управления (а – изменение температуры (Тзад – заданная температура), б – изменение состояния нагревателя).
На рис. 15 показаны переходные процессы изменения во времени температуры плиты вместе установки термопары и напряжения нагревателя. При включенном нагревателе измеренная температура повышается, и когда она сравняется с заданной (точка а), регулятор выключает нагреватель. Однако в следствии явления запаздывания в объекте температура сначала продолжает расти, достигает некоторого максимального значения (точка б) и только после этого начинает уменьшаться. При достижении заданной температуры (точка в) снова включается нагреватель и все происходит в обратном порядке. Температура по инерции проскакивает заданное значение, достигает минимальной величины (точка г) и за тем увеличиваясь, происходит заданное значение температуры в точке д. Далее этот цикл повторяется. Как видно, в рассмотренной двухпозиционной системе управления возникают незатухающие колебания температуры возле заданного значения. Такой процесс регулирования характерен для любой позиционной системы управления.
Период колебаний (промежуток времени между точками а и д) зависит от инерции объекта: чем она больше, тем больше период колебаний регулируемого параметра. Амплитуда же колебаний в основном определяется запаздыванием в объекте и с его увеличением растет. В малоинерционных объектах период колебаний может оказаться на столько малым, что регулирующий орган будет быстро изнашиваться из-за частого срабатывания. Представленный выше объект регулирования, у которого статическая характеристика – зависимость входного сигнала (регулируемого параметра) от входного (регулирующего параметра) – была такова, что увеличение регулирующего параметра приводило либо только к увеличению, либо только к уменьшению регулируемого параметра. Так, при регулировании температуры в реакторе подачей греющего пара увеличение расхода пара всегда приводит к росту температуры. Такая зависимость называется монотонной, и это свойство объекта является отличным признаком стабилизирующих систем. Благодаря этому обратная связь в системе управления остается отрицательным во всем возможном диапазоне изменения регулируемого параметра.
ЛЕКЦИЯ 12